Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
REVIEW

Novel chlorophylls and new directions in photosynthesis research

Yaqiong Li A and Min Chen A B
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, The University of Sydney, NSW 2006, Australia.

B Corresponding author. Email: min.chen@sydney.edu.au

This review originates from the Peter Goldacre Award 2013 of the Australian Society of Plant Scientists that was received by the second author.

Functional Plant Biology 42(6) 493-501 https://doi.org/10.1071/FP14350
Submitted: 12 December 2014  Accepted: 6 February 2015   Published: 6 March 2015

Abstract

Chlorophyll d and chlorophyll f are red-shifted chlorophylls, because their Qy absorption bands are significantly red-shifted compared with chlorophyll a. The red-shifted chlorophylls broaden the light absorption region further into far red light. The presence of red-shifted chlorophylls in photosynthetic systems has opened up new possibilities of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we report on the chemistry and function of red-shifted chlorophylls in photosynthesis and summarise the unique adaptations that have allowed the proliferation of chlorophyll d- and chlorophyll f-containing organisms in diverse ecological niches around the world.

Additional keywords: Acaryochloris, chlorophyll d, chlorophyll f, cyanobacteria, hongdechloris, photosynthesis.


References

Airs RL, Temperton B, Sambles C, Farnham G, Skill SC, Llewellyn CA (2014) Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation. FEBS Letters 588, 3770–3777.
Chlorophyll f and chlorophyll d are produced in the cyanobacterium Chlorogloeopsis fritschii when cultured under natural light and near-infrared radiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsVKnu7%2FP&md5=d71bda08af205ff3541b437d5d4fab63CAS | 25176411PubMed |

Akiyama M, Miyashita H, Kise H, Watanabe T, Miyachi S, Kobayashi M (2001) Detection of chlorophyll d and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina. Analytical Sciences 17, 205–208.
Detection of chlorophyll d and pheophytin a in a chlorophyll d-dominating oxygenic photosynthetic prokaryote Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD383lsVKmtw%3D%3D&md5=0df87d53603fafecbfdb30e23abe9212CAS | 11993664PubMed |

Akutsu S, Fujinuma D, Furukawa H, Watanabe T, Ohnishi-Kameyama M, Ono H, Ohkubo S, Miyashita H, Kobayashi MC (2011) Pigment analysis of a chlorophyll f-containing cyanobacterium strain KC1 isolated from Lake Biwa. Photomedicine and Photobiology 33, 35–40.

Allakhverdiev SI, Tomo T, Shimada Y, Kindo H, Nagao R, Klimov VV, Mimuro M (2010) Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls. Proceedings of the National Academy of Sciences of the United States of America 107, 3924–3929.
Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjtFylsL8%3D&md5=d9f05fe6d36d7142ff7259155a36bb62CAS | 20142495PubMed |

Allakhverdiev SI, Tsuchiya T, Watabe K, Kojima A, Los DA, Tomo T, Klimov VV, Mimuro M (2011) Redox potentials of primary electron acceptor quinone molecule (QA) - and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d. Proceedings of the National Academy of Sciences of the United States of America 108, 8054–8058.
Redox potentials of primary electron acceptor quinone molecule (QA) - and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVSrsr8%3D&md5=bcfa7045c9a273b25ea808ce61745ee1CAS | 21521792PubMed |

Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chemical Society Reviews 38, 185–196.
Photosynthetic energy conversion: natural and artificial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFWjtL3F&md5=db9081cb32d895b0efe44dcf47cee297CAS | 19088973PubMed |

Björn L, Papageorgiou G, Blankenship R (2009) A viewpoint: why chlorophyll a? Photosynthesis Research 99, 85–98.
A viewpoint: why chlorophyll a? Crossref | GoogleScholarGoogle Scholar | 19125349PubMed |

Blankenship RE (2014) Photosynthetic pigments: structure and spectroscopy. In ‘Molecular mechanisms of photosynthesis’. (Ed. RE Blankenship) pp. 41−57. (John Wiley & Sons: Oxford)

Blankenship RE, Hartman H (1998) The origin and evolution of oxygenic photosynthesis. Trends in Biochemical Sciences 23, 94–97.
The origin and evolution of oxygenic photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVOms74%3D&md5=963f7c55a579c36612640da1ac1bc2c1CAS | 9581499PubMed |

Blankenship RE, Prince RC (1985) Excited-state redox potentials and the Z scheme of photosynthesis. Trends in Biochemical Sciences 10, 382–383.
Excited-state redox potentials and the Z scheme of photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XjtlKjtQ%3D%3D&md5=0fdb26f79f828b7c621da7eeee599bd6CAS |

Brown II, Bryant DA, Casamatta D, Thomas-Keprta KL, Sarkisova SA, Shen G, Graham JE, Boyd ES, Peters JW, Garrison DH, McKay DS (2010) Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits. Applied and Environmental Microbiology 76, 6664–6672.
Polyphasic characterization of a thermotolerant siderophilic filamentous cyanobacterium that produces intracellular iron deposits.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlartr%2FK&md5=c7449a7ed22690ba341bb3232bd9083fCAS | 20709851PubMed |

Chen M (2014a) ‘Chlorophylls and photosynthesis. Case Study 1.2, Plants in action.’ (Australian Society of Plant Scientists) Available at: http://plantsinaction.science.uq.edu.au

Chen M (2014b) Chlorophyll modifications and their spectral extension in oxygenic photosynthesis. Annual Review of Biochemistry 83, 317–340.
Chlorophyll modifications and their spectral extension in oxygenic photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFOhtrjI&md5=beb9d06ebd26ece241132e125ac52e4dCAS | 24635479PubMed |

Chen M, Blankenship RE (2011) Expanding the solar spectrum used by photosynthesis. Trends in Plant Science 16, 427–431.
Expanding the solar spectrum used by photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpvFWqsr0%3D&md5=adaea76883df5e5352fe1911365490f8CAS | 21493120PubMed |

Chen M, Scheer H (2013) Extending the limits of natural photosynthesis and implication for technical light harvesting. Journal of Porphyrins and Phthalocyanines 17, 1–15.
Extending the limits of natural photosynthesis and implication for technical light harvesting.Crossref | GoogleScholarGoogle Scholar |

Chen M, Quinnell RG, Larkum AWD (2002) The major light harvesting pigment protein of Acaryochloris marina. FEBS Letters 514, 149–152.
The major light harvesting pigment protein of Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1ejtrw%3D&md5=de743724bd7e0e8f044478ba2e625b7fCAS | 11943141PubMed |

Chen M, Telfer A, Lin S, Pascal A, Larkum AWD, Barber J, Blankenship RE (2005) The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina. Photochemical & Photobiological Sciences 4, 1060–1064.
The nature of the photosystem II reaction centre in the chlorophyll d-containing prokaryote, Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1Cit77M&md5=214aaef244f1ccb55536c6cab95ce016CAS |

Chen M, Floetenmeyer M, Bibby T (2009) Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina. FEBS Letters 583, 2535–2539.
Supramolecular organization of phycobiliproteins in the chlorophyll d-containing cyanobacterium Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXptlahu7g%3D&md5=c0ad2ce7b099e53dd6fc0ff242d71dbfCAS | 19596002PubMed |

Chen M, Schliep M, Willows RD, Cai Z-L, Neilan BA, Scheer H (2010) A red-shifted chlorophyll. Science 329, 1318–1319.
A red-shifted chlorophyll.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFajs7rM&md5=17fe33c88a9cec88d5b9d7fe75f3f822CAS | 20724585PubMed |

Chen M, Li Y, Birch D, Willows RD (2012) A cyanobacterium that contains chlorophyll f – a red-absorbing photopigment. FEBS Letters 586, 3249–3254.
A cyanobacterium that contains chlorophyll f – a red-absorbing photopigment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVymsL3J&md5=fe41b60dac2a58e9c1ca3589a24bd310CAS | 22796191PubMed |

Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, Lisa W-J, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Archives of Microbiology 157, 297–300.
Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsVyisLg%3D&md5=337198eb28826f00944d47914648162aCAS |

Corbet D, Schweikardt T, Paulsen H, Schmid VH (2007) Amino acids in the second transmembrane helix of the Lhca4 subunit are important for formation of stable heterodimeric light-harvesting complex LHCI-730. Journal of Molecular Biology 370, 170–182.
Amino acids in the second transmembrane helix of the Lhca4 subunit are important for formation of stable heterodimeric light-harvesting complex LHCI-730.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVeit7g%3D&md5=610b97e125f174366795c6254fc61b01CAS | 17509613PubMed |

Croce R, van Amerongen H (2014) Natural strategies for photosynthetic light harvesting. Nature Chemical Biology 10, 492–501.
Natural strategies for photosynthetic light harvesting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXpvFWks7Y%3D&md5=ce5a278b736e8de79b8d5997441a84f4CAS | 24937067PubMed |

Dau H, Haumann M (2008) The manganese complex of photosystem II in its reaction cycle – basic framework and possible realization at the atomic level. Coordination Chemistry Reviews 252, 273–295.
The manganese complex of photosystem II in its reaction cycle – basic framework and possible realization at the atomic level.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXosFCitw%3D%3D&md5=f3566ca8e621a068bc0f602901b1c19aCAS |

Duxbury Z, Schliep M, Ritchie R, Larkum A, Chen M (2009) Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina. Photosynthesis Research 101, 69–75.
Chromatic photoacclimation extends utilisable photosynthetically active radiation in the chlorophyll d-containing cyanobacterium, Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovFyhsr4%3D&md5=f6d8d1beb070a3ffb994de9bdc4349d5CAS | 19582591PubMed |

Evans HE, Foulds I, Carr NG (1976) Environmental conditions and morphological variation in the blue-green alga Chlorogloea fritschii. Journal of General Microbiology 92, 147–155.
Environmental conditions and morphological variation in the blue-green alga Chlorogloea fritschii.Crossref | GoogleScholarGoogle Scholar |

Gan F, Zhang S, Rockwell NC, Martin SS, Lagarias JC, Bryant DA (2014) Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science 345, 1312–1317.
Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsV2qtLzF&md5=e042f763e636d0f3770d9504fb612e07CAS | 25214622PubMed |

Goericke R, Repeta DJ (1992) The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prochlorophyte. Limnology and Oceanography 37, 425–433.
The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine prochlorophyte.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlsVKrsbs%3D&md5=b41964587d6a6c45e65643f750711b83CAS |

Gouterman M (1961) Spectra of porphyrins. Journal of Molecular Spectroscopy 6, 138–163.
Spectra of porphyrins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXhtV2rtLw%3D&md5=54928e4bf8fa9dd1853704480060f41fCAS |

Hanson LS (1991) Molecular orbital theory of monomer pigments. In ‘Chlorophylls’. (Ed. H Scheer) pp. 993−1013. (CRC Press: Boca Raton, FL, USA)

Holt AS (1961) Further evidence of the relation between 2-desvinyl-2-formyl-chlorophyll-a and chlorophyll-d. Canadian Journal of Botany 39, 327–331.
Further evidence of the relation between 2-desvinyl-2-formyl-chlorophyll-a and chlorophyll-d.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF3MXntFegtQ%3D%3D&md5=c5c975201f9ee4fe83df62c778b050a4CAS |

Holt AS, Morley HV (1959) A proposed structure for chlorophyll d. Canadian Journal of Chemistry 37, 507–514.
A proposed structure for chlorophyll d.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaG1MXovFCltQ%3D%3D&md5=3486af7d6a9e935e5bcc876235c03a85CAS |

Hoober JK, Eggink LL, Chen M (2007) Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts. Photosynthesis Research 94, 387–400.
Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ksL7K&md5=edca1fe8fb4f7c413016a22c619346cfCAS | 17505910PubMed |

Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M, Itoh S (1998) A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proceedings of the National Academy of Sciences of the United States of America 95, 13319–13323.
A photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFWrsLc%3D&md5=39c8d2d5393fe6b6c47e8263cc4bcfa8CAS | 9789086PubMed |

Ito H, Tanaka A (2011) Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus. Proceedings of the National Academy of Sciences of the United States of America 108, 18014–18019.
Evolution of a divinyl chlorophyll-based photosystem in Prochlorococcus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVOktLnE&md5=63b46c93bfb30dd097454a16f0040db7CAS | 22006316PubMed |

Itoh S, Mino H, Itoh K, Shigenaga T, Uzumaki T, Iwaki M (2007) Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina. Biochemistry 46, 12473–12481.
Function of chlorophyll d in reaction centers of photosystems I and II of the oxygenic photosynthesis of Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtFalurbK&md5=4dea4b28b362531ac773e3834e28e8e4CAS | 17918957PubMed |

Jeffrey ST, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167, 191–194.

Kalyanasundaram K, Graetzel M (2010) Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage. Current Opinion in Biotechnology 21, 298–310.
Artificial photosynthesis: biomimetic approaches to solar energy conversion and storage.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmslOht7w%3D&md5=4764cc1b7848a33d5dfeacb705199550CAS | 20439158PubMed |

Koehne B, Elli G, Jennings RC, Wilhelm C, Trissl H (1999) Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1412, 94–107.
Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXks1CltbY%3D&md5=bc16bfd87cde817af8f9c2b9cd3b7766CAS |

Kühl M, Chen M, Ralph P, Schreiber U, Larkum AWD (2005) A niche for cyanobacteria containing chlorophyll d. Nature 433, 820
A niche for cyanobacteria containing chlorophyll d.Crossref | GoogleScholarGoogle Scholar | 15729331PubMed |

La Roche J, Larkum AWD, Green BR, Van der Staay GWM, Partensky F, Ducret A, Aebersold R, Li R, Golden SS, Hiller RG, Wrench PM (1996) Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins Proceedings of the National Academy of Sciences of the United States of America 93, 15244–15248.
Independent evolution of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteinsCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntFKg&md5=e929ad9c2d151e7967f520bf2e56c45bCAS | 8986795PubMed |

Larkum AWD, Chen M, Li Y, Schliep M, Trampe E, West J, Salih A, Kühl M (2012) A novel epiphytic chlorophyll d-containing cyanobacterium isolated from a mangrove-associated red alga. Journal of Phycology 48, 1320–1327.
A novel epiphytic chlorophyll d-containing cyanobacterium isolated from a mangrove-associated red alga.Crossref | GoogleScholarGoogle Scholar |

Li Y, Scales N, Blankenship RE, Willows RD, Chen M (2012) Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1817, 1292–1298.
Extinction coefficient for red-shifted chlorophylls: chlorophyll d and chlorophyll f.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xkt1Ghs78%3D&md5=a5d5f5a8d5ad0e6a48808c35a72d37bbCAS |

Li Y, Cai Z-L, Chen M (2013) Spectroscopic properties of chlorophyll f. Journal of Physical Chemistry B 117, 11309–11317.
Spectroscopic properties of chlorophyll f.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXmsFGks7k%3D&md5=63a361b72317ae04fa41364f32c38528CAS |

Li Y, Lin Y, Loughlin PC, Chen M (2014) Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f. Frontiers in Plant Science 5, 67
Optimization and effects of different culture conditions on growth of Halomicronema hongdechloris–a filamentous cyanobacterium containing chlorophyll f.Crossref | GoogleScholarGoogle Scholar | 24616731PubMed |

Lin Y, Crossett B, Chen M (2013) Effects of anaerobic conditions on photosynthetic units of Acaryochloris marina. In ‘Photosynthesis research for food, fuel and the future’. (Eds T Kuang, C Lu, L Zhang) pp. 121−124. (Zhejiang University Press: Hangzhou, China)

Loughlin P, Lin Y, Chen M (2013) Chlorophyll d and Acaryochloris marina: current status Photosynthesis Research 116, 277–293.
Chlorophyll d and Acaryochloris marina: current statusCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1ClsLzP&md5=e6fbc46c13a2e6494471f77631de976fCAS | 23615924PubMed |

Manning MM, Strain HH (1943) Chlorophyll d, a green pigment of red algae. Journal of Biological Chemistry 151, 1–19.

Marquardt J, Senger H, Miyashita H, Miyachi S, Mörschel E (1997) Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d. FEBS Letters 410, 428–432.
Isolation and characterization of biliprotein aggregates from Acaryochloris marina, a Prochloron-like prokaryote containing mainly chlorophyll d.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXktlCqtr4%3D&md5=5c41917e53b0c03c6bbee0cb4b846ab8CAS | 9237676PubMed |

Melkozernov AN, Blankenship RE (2003) Structural modeling of the Lhca4 subunit of LHCI-730 peripheral antenna in photosystem I based on similarity with LHCII. Journal of Biological Chemistry 278, 44542–44551.
Structural modeling of the Lhca4 subunit of LHCI-730 peripheral antenna in photosystem I based on similarity with LHCII.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslWmu7Y%3D&md5=c91288061c872976e0d977ca1943461dCAS | 12923171PubMed |

Mielke SP, Kiang NY, Blankenship RE, Mauzerall D (2013) Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1827, 255–265.
Photosystem trap energies and spectrally-dependent energy-storage efficiencies in the Chl d-utilizing cyanobacterium, Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXitleit7c%3D&md5=d986801aa05fa65842ae8c5e591b4accCAS |

Miller SR, Augustine S, Olson TL, Blankenship RE, Selker J, Wood AM (2005) Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene. Proceedings of the National Academy of Sciences of the United States of America 102, 850–855.
Discovery of a free-living chlorophyll d-producing cyanobacterium with a hybrid proteobacterial/cyanobacterial small-subunit rRNA gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Cqtr8%3D&md5=2ea1c4eb5cd707f8bcdb8d041f6aaeedCAS | 15637160PubMed |

Mimuro M, Hirayama K, Uezono K, Miyashita H, Miyachi S (2000) Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1456, 27–34.
Uphill energy transfer in a chlorophyll d-dominating oxygenic photosynthetic prokaryote, Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXotFKiuw%3D%3D&md5=e8aa8c53faf496cb3a6bdf945e7047e4CAS |

Mimuro M, Akimoto S, Gotoh T, Yokono M, Akiyama M, Tsuchiya T, Miyashita H, Kobayashi M, Yamazaki I (2004) Identification of the primary electron donor in PSII of the Chl d-dominated cyanobacterium Acaryochloris marina. FEBS Letters 556, 95–98.
Identification of the primary electron donor in PSII of the Chl d-dominated cyanobacterium Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXoslyh&md5=31ee21aa5875ffa7d663bb583e8a770aCAS | 14706833PubMed |

Mitra AK (1950) Two new algae from Indian soils. Annals of Botany 14, 457–464.

Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M, Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383, 402
Chlorophyll d as a major pigment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xmt1yktrk%3D&md5=9098a15a22d47fbb4c02414e10e59b98CAS |

Miyashita H, Ohkubo S, Komatsu H, Sorimachi Y, Fukayama D (2014) Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, Isolated from Lake Biwa. Journal of Physical Chemistry & Biophysics 4, 149
Discovery of chlorophyll d in Acaryochloris marina and chlorophyll f in a unicellular cyanobacterium, strain KC1, Isolated from Lake Biwa.Crossref | GoogleScholarGoogle Scholar |

Mohr R, Vosz B, Schliep M, Kurz T, Maldener I, Adams DG, Larkum ADW, Chen M, Hess WR (2010) A new chlorophyll d containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris. The ISME Journal 4, 1456–1469.
A new chlorophyll d containing cyanobacterium: evidence for niche adaptation in the genus Acaryochloris.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtlWmtb3N&md5=9663762e9c7af85654e4108b06ba4d43CAS | 20505751PubMed |

Moore LR, Goericke R, Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Marine Ecology Progress Series 116, 259–275.
Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties.Crossref | GoogleScholarGoogle Scholar |

Morel A, Ahn YH, Partensky F, Vaulot D, Claustre H (1993) Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation. Journal of Marine Research 51, 617–649.
Prochlorococcus and Synechococcus: A comparative study of their optical properties in relation to their size and pigmentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFyltb4%3D&md5=02c7677ce06bdd84ddcd254f4f2a30deCAS |

Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303, 1633
Chlorophyll d in an epiphytic cyanobacterium of red algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXitFersb0%3D&md5=e6ab5b5578a78b9c74f2b7f89ee566e7CAS | 15016990PubMed |

Partensky F, Hoepffner N, Li WK, Ulloa O, Vaulot D (1993) Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. Plant Physiology 101, 285–296.

Partensky F, Hess WR, Vaulot D (1999) Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiology and Molecular Biology Reviews 63, 106–127.

Pelletier PJ, Caventou JB (1818) Sur la matiere verte des feuilles. Annales de Chimie et de Physique 9, 194–196.

Petke JD, Maggiora G, Shipman L, Christoffersen R (1979) Stereoelectronic properties of photosynthetic and related systems-v. ab initio configuration interaction calculations on the ground and lower excited singlet and triplet states of ethyl chlorophyllide a and ethyl pheophorbide a. Photochemistry and Photobiology 30, 203–223.
Stereoelectronic properties of photosynthetic and related systems-v. ab initio configuration interaction calculations on the ground and lower excited singlet and triplet states of ethyl chlorophyllide a and ethyl pheophorbide a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXmslShtg%3D%3D&md5=7138274d12a12e496452284186ad58b1CAS |

Schlodder E, Çetin M, Byrdin M, Terekhova IV, Karapetyan NV (2005) P700+- and 3P700- induced quenching of the fluorescence at 760 nm in trimeric photosystem I complexes from the cyanobacterium Arthrospira platensis. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1706, 53–67.
P700+- and 3P700- induced quenching of the fluorescence at 760 nm in trimeric photosystem I complexes from the cyanobacterium Arthrospira platensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtFGht77L&md5=0a87b737a71acb9f81b8c62a09522714CAS |

Tomo T, Okubo T, Akimoto S, Yokono M, Miyashita H, Tsuchiya T, Noguchi T, Mimuro M (2007) Identification of the special pair of photosystem II in a chlorophyll d dominated cyanobacterium. Proceedings of the National Academy of Sciences of the United States of America 104, 7283–7288.
Identification of the special pair of photosystem II in a chlorophyll d dominated cyanobacterium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXls1OgtLs%3D&md5=5da6c55b40ce02dd32bf286dd670ac57CAS | 17431035PubMed |

Tomo T, Kato Y, Suzuki T, Akimoto S, Okubo T, Noguchi T, Hasegawa K, Tsuchiya T, Tanaka K, Fukuya M, Dohmae N, Watanabe T, Mimuro M (2008) Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017. Journal of Biological Chemistry 283, 18198–18209.
Characterization of highly purified photosystem I complexes from the chlorophyll d-dominated cyanobacterium Acaryochloris marina MBIC 11017.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVCnsrk%3D&md5=2a5d8fd91eba765bdb22e7902c21ef0aCAS | 18458090PubMed |

Tomo T, Allakhverdiev SI, Mimuro M (2011) Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina. Journal of Photochemistry and Photobiology. B, Biology 104, 333–340.
Constitution and energetics of photosystem I and photosystem II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFWjsbo%3D&md5=e4b4563b5d8191301315e99177d0dcacCAS | 21530298PubMed |

Weiss C (1978) Electronic absorption spectra of chlorophylls. In ‘The porphyrins. Vol. III, Physical chemistry. Part A’. (Ed. D Dolphin) pp. 211–223. (Academic Press: New York)

Wilhelm C, Jakob T (2006) Uphill energy transfer from long wavelength absorbing chlorophylls to PSII in Ostreobium sp. is functional in carbon assimilation. Photosynthesis Research 87, 323–329.
Uphill energy transfer from long wavelength absorbing chlorophylls to PSII in Ostreobium sp. is functional in carbon assimilation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XksFGlur4%3D&md5=aad8d1a55a3082c5d7eb7526ac897f0eCAS | 16416051PubMed |

Willows RD, Li Y, Scheer H, Chen M (2013) Structure of chlorophyll f. Organic Letters 15, 1588–1590.
Structure of chlorophyll f.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXktFKgt74%3D&md5=537005d9867bd4d140d578d54bbb8869CAS | 23496297PubMed |

Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status. In ‘Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and applications’. (Ed. B Grimm) pp. 39−53. (Springer: Dordrecht, The Netherlands)