Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Functional Plant Biology Functional Plant Biology Society
Plant function and evolutionary biology
RESEARCH ARTICLE

Salt-induced accumulation of glycine betaine is inhibited by high light in durum wheat

Petronia Carillo A C , Danila Parisi A , Pasqualina Woodrow A , Giovanni Pontecorvo A , Giuseppina Massaro A , Maria Grazia Annunziata A , Amodio Fuggi A and Ronan Sulpice B
+ Author Affiliations
- Author Affiliations

A Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta, Italy.

B Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, Germany.

C Corresponding author. Email: petronia.carillo@unina2.it

Functional Plant Biology 38(2) 139-150 https://doi.org/10.1071/FP10177
Submitted: 25 August 2010  Accepted: 23 November 2010   Published: 1 February 2011

Abstract

In this study, we determined the effects of both salinity and high light on the metabolism of durum wheat (Triticum durum Desf. cv. Ofanto) seedlings, with a special emphasis on the potential role of glycine betaine in their protection. Unexpectedly, it appears that high light treatment inhibits the synthesis of glycine betaine, even in the presence of salt stress. Additional solutes such as sugars and especially amino acids could partially compensate for the decrease in its synthesis upon exposure to high light levels. In particular, tyrosine content was strongly increased by high light, this effect being enhanced by salt treatment. Interestingly, a large range of well-known detoxifying molecules were also not induced by salt treatment in high light conditions. Taken together, our results question the role of glycine betaine in salinity tolerance under light conditions close to those encountered by durum wheat seedlings in their natural environment and suggest the importance of other mechanisms, such as the accumulation of minor amino acids.

Additional keywords: ascorbate, leaf development, MDA, nitrogen metabolism, proline.


References

Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiology 143, 1720–1738.
Specific roles of alpha- and gamma-tocopherol in abiotic stress responses of transgenic tobacco.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXksFWjtLc%3D&md5=b21c38162510e7c88a19024b20e2ef10CAS | 17293434PubMed |

Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. The Plant Cell 9, 1559–1572.

Ashraf M, Akram NA (2009) Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison. Biotechnology Advances 27, 744–752.
Improving salinity tolerance of plants through conventional breeding and genetic engineering: an analytical comparison.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1CqtbjJ&md5=8219711d826c257463b83f02fbe84455CAS | 19500659PubMed |

Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59, 206–216.
Roles of glycine betaine and proline in improving plant abiotic stress resistance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1Cqtb%2FF&md5=76cba22404efc933ce71af2404429abaCAS |

Banu NA, Hoque A, Watanabe-Sugimoto M, Matsuoka K, Nakamura Y, Shimoishi Y, Murata Y (2009) Proline and glyclinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress. Journal of Plant Physiology 166, 146–156.
Proline and glyclinebetaine induce antioxidant defense gene expression and suppress cell death in cultured tobacco cells under salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXit1Kntbo%3D&md5=fbca3baf23e82453ebb8f78e6b3ef1cfCAS | 18471929PubMed |

Bessieres MA, Gibon Y, Lefeuvre JC, Larher F (1999) A single-stop purification for glycine betaine determination in plant extracts by isocratic HPLC. Journal of Agricultural and Food Chemistry 47, 3718–3722.
A single-stop purification for glycine betaine determination in plant extracts by isocratic HPLC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlt12rurg%3D&md5=c3923d4df5f19e6a0c55656137e36f50CAS | 10552711PubMed |

Bolton JR, Hall DO (1991) The maximum efficiency of photosynthesis. Photochemistry and Photobiology 53, 545–548.
The maximum efficiency of photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Gqsbw%3D&md5=12861ef01cfdcaad8204c72ee5c3c625CAS |

Bonente G, Dall’Osto L, Bassi R (2008) In between photosynthesis and photoinhibition: the fundamental role of carotenoids and carotenoid-binding proteins in photoprotection. In ‘Biophotonics’. (Eds L Pavesi, PM Fauchet) pp. 29–70. (Springer-Verlag: Berlin)

Bowsher CG, Tobin AK (2001) Compartmentation of metabolism within mitochondria and plastids. Journal of Experimental Botany 52, 513–527.
Compartmentation of metabolism within mitochondria and plastids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFKht78%3D&md5=129414d85dabe4bf66f4b0f0a21e4eb9CAS | 11373301PubMed |

Bradford MM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Analytical Biochemistry 72, 248–254.
Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XksVehtrY%3D&md5=606a1898fb14c5ab3908d2f4fe5a0f08CAS | 942051PubMed |

Carillo P, Mastrolonardo G, Nacca F, Fuggi A (2005) Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity. Functional Plant Biology 32, 209–219.
Nitrate reductase in durum wheat seedlings as affected by nitrate nutrition and salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXivFWjt78%3D&md5=cf926694e224d226c1331b79618b5e2fCAS |

Carillo P, Mastrolonardo G, Nacca F, Parisi D, Verlotta A, Fuggi A (2008) Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine. Functional Plant Biology 35, 412–426.
Nitrogen metabolism in durum wheat under salinity: accumulation of proline and glycine betaine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlCksLk%3D&md5=0927767b42c06a0d2bcaf0de5a597f93CAS |

Chen THH, Murata N (2008) Glycinebetaine: an effective protectant against abiotic stress in plants. Trends in Plant Science 13, 499–505.
Glycinebetaine: an effective protectant against abiotic stress in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtV2jtLrP&md5=940f43ae8c3d2f3aa0a943c83713bd53CAS | 18703379PubMed |

Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. The Plant Journal 4, 215–223.
Proline biosynthesis and osmoregulation in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXhsFyksbk%3D&md5=a8a8af452c45c2c29965ee6e9908d797CAS |

Di Martino C, Delfine S, Pizzuto R, Loreto F, Fuggi A (2003) Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytologist 158, 455–463.
Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltFGgsrw%3D&md5=2fb9fc26e8ff25dc379de775a37769d3CAS |

FAO (2002) World agriculture: towards 2015/2030. Summary report. Available at http://www.fao.org/docrep/004/y3557e/y3557e00.htm [Verified 23 December 2010]

Flagella Z, Trono D, Pompa M, Di Fonzo N, Pastore D (2006) Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings. Functional Plant Biology 33, 357–366.
Seawater stress applied at germination affects mitochondrial function in durum wheat (Triticum durum) early seedlings.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtVOmurc%3D&md5=9a96935b1eeb435065393cf8ab01812fCAS |

Flowers TJ, Troke PF, Yeo AR (1977) Mechanism of salt tolerance in halophytes. Annual Review of Plant Physiology and Plant Molecular Biology 28, 89–121.

Foyer CH, Noctor G (2003) Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiologia Plantarum 119, 355–364.
Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslekt74%3D&md5=2b30947eb9c29b82e3cd3764bdbc9291CAS |

Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T (2008) Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. Physiologia Plantarum 134, 22–30.
Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFChtb3K&md5=3cca5435579581a8b1ecb4d3fdfb011cCAS | 18429940PubMed |

Gibon Y, Sulpice R, Larher F (2000) Proline accumulation in canola leaf discs subjected to osmotic stress is related to the loss of chlorophylls and to the decrease of mitochondrial activity. Physiologia Plantarum 110, 469–476.
Proline accumulation in canola leaf discs subjected to osmotic stress is related to the loss of chlorophylls and to the decrease of mitochondrial activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXpsFeh&md5=91d943e3933f03e16564fcd543c7b087CAS |

Gorham J (1995) Betaines in higher plants: biosynthesis and role in stress metabolism. In ‘Amino acids and their derivatives in higher plants’. (Ed. RM Wallsgrove) pp. 171–203. (Cambridge University Press: Cambridge)

Gorham J, Hardy C, Jones RGW, Joppa LR, Law CN (1987) Chromosomal location of a K/Na discrimination character in the D-genome of wheat. Theoretical and Applied Genetics 74, 584–588.
Chromosomal location of a K/Na discrimination character in the D-genome of wheat.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXjsV2iug%3D%3D&md5=f9e6bad67a99fb19183f7eac49c69a13CAS |

Gorham J, Bristol A, Young EM, Jones RGW, Kashour G (1990) Salt tolerance in the Triticeae: K/Na discrimination in barley. Journal of Experimental Botany 41, 1095–1101.
Salt tolerance in the Triticeae: K/Na discrimination in barley.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvVygur0%3D&md5=bba9a9437a44122c278cee518b90557bCAS |

Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annual Review of Plant Physiology and Plant Molecular Biology 51, 463–499.
Plant cellular and molecular responses to high salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlsVymt7s%3D&md5=6cb239a13a0581221e65204097647e08CAS | 15012199PubMed |

Havaux M, Eymery F, Porfirova S, Rey P, Dormann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. The Plant Cell 17, 3451–3469.
Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlersL3N&md5=97a078e06eedbae08c8d18cfbc34faedCAS | 16258032PubMed |

Holländer-Czytko H, Grabowski J, Sandorf I, Weckermann K, Weiler EW (2005) Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions. Journal of Plant Physiology 162, 767–770.
Tocopherol content and activities of tyrosine aminotransferase and cystine lyase in Arabidopsis under stress conditions.Crossref | GoogleScholarGoogle Scholar | 16008101PubMed |

Hoque MA, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y (2008) Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells. Journal of Plant Physiology 165, 813–824.
Proline and glycinebetaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl-induced damage in cultured tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaltLs%3D&md5=7c8a080d5bb8ff154680cd03c14b3846CAS | 17920727PubMed |

Islam MM, Hoque A, Okuma E, Nasrin M, Banu A, Shimoishi Y, Nakamura Y, Murata Y (2009) Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells. Journal of Plant Physiology 166, 1587–1597.
Exogenous proline and glycinebetaine increase antioxidant enzyme activities and confer tolerance to cadmium stress in cultured tobacco cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlShtbbE&md5=07b59a474b252b032a0c16daedaf06d9CAS | 19423184PubMed |

Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34, 315–320.
Free radical scavenging potential of L-proline: evidence from in vitro assays.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXkvFWms7s%3D&md5=2b5d2733779be872b2f71f23789464a2CAS | 17086481PubMed |

Krieger-Liszkay A (2005) Singlet oxygen production in photosynthesis. Journal of Experimental Botany 56, 337–346.
Singlet oxygen production in photosynthesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXovVymsg%3D%3D&md5=495d19aee1bfd6b1cd56bca6366298faCAS | 15310815PubMed |

Läuchli A, James RA, Huang CX, McCully M, Munns R (2008) Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion. Plant, Cell & Environment 31, 1565–1574.
Cell-specific localization of Na+ in roots of durum wheat and possible control points for salt exclusion.Crossref | GoogleScholarGoogle Scholar | 18702634PubMed |

Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43, 491–500.
Nitrogen containing compounds and adaptation of plants to salinity stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosFKjurc%3D&md5=2866871782490ddc6e3e721f08eaa007CAS |

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell & Environment 33, 453–467.
Reactive oxygen species homeostasis and signalling during drought and salinity stresses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXltV2hur8%3D&md5=b081dfb0ff88933381bb482d50ec9c07CAS | 19712065PubMed |

Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell & Environment 25, 239–250.
Comparative physiology of salt and water stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslakurw%3D&md5=f51a15096130985e65701806a7266f1bCAS | 11841667PubMed |

Munns R, Termaat A (1986) Whole-plant responses to salinity. Australian Journal of Plant Physiology 13, 143–160.
Whole-plant responses to salinity.Crossref | GoogleScholarGoogle Scholar |

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annual Review of Plant Biology 59, 651–681.
Mechanisms of salinity tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXntFaqtrw%3D&md5=4ff74227fb3898bf12208db44bd191acCAS | 18444910PubMed |

Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49, 249–279.
Ascorbate and glutathione: keeping active oxygen under control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjvVShtrc%3D&md5=5d07f7d7ad479f9f69d1faccd9f5e4a2CAS | 15012235PubMed |

Noreen Z, Ashraf M (2009) Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology 166, 1764–1774.
Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVSms7zI&md5=ae3607c4d811749d0ec6c15d731dce88CAS | 19540015PubMed |

Papageorgiou GC, Murata N (1995) The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem-II complex. Photosynthesis Research 44, 243–252.
The unusually strong stabilizing effects of glycine betaine on the structure and function of the oxygen-evolving photosystem-II complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvVeiurk%3D&md5=680d0480f3bede046f84c7d822a32eceCAS |

Quan RD, Shang M, Zhang H, Zhao YX, Zhang JR (2004) Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Science 166, 141–149.
Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXltVyjtQ%3D%3D&md5=1d739031dd969d22136690fa06917ea0CAS |

Queval G, Noctor G (2007) A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development. Analytical Biochemistry 363, 58–69.
A plate reader method for the measurement of NAD, NADP, glutathione, and ascorbate in tissue extracts: application to redox profiling during Arabidopsis rosette development.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXislWksbc%3D&md5=723042b6a98766068075b22f150399b8CAS | 17288982PubMed |

Rana G, Katerji N (2000) Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. European Journal of Agronomy 13, 125–153.
Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review.Crossref | GoogleScholarGoogle Scholar |

Rhodes D, Hanson AD (1993) Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annual Review of Plant Physiology and Plant Molecular Biology 44, 357–384.
Quaternary ammonium and tertiary sulfonium compounds in higher-plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlGmtr8%3D&md5=23a8b29f535eb480d28e726235a838e3CAS |

Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Current Science 86, 407–421.

Sakamoto A, Murata N (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant, Cell & Environment 25, 163–171.
The role of glycine betaine in the protection of plants from stress: clues from transgenic plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xhslaktbg%3D&md5=b9e9144ea8feb71bab2f4974831cc479CAS | 11841661PubMed |

Saneoka H, Nagasaka C, Hahn DT, Yang WJ, Premachandra GS, Joly RJ, Rhodes D (1995) Salt tolerance of glycinebetaine-deficient and glycinebetaine-containing maize lines. Plant Physiology 107, 631–638.

Shahidi F (2002) Antioxidants in plants and oleaginous seeds. In ‘Free radicals in food: chemistry, nutrition and health effects’. ACS Symposium Series 807. (Eds MJ Morello, F Shahidi, C-T Ho) pp. 162–175. (American Chemical Society: Washington, DC)

Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany 57, 711–726.
The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVOqtrk%3D&md5=a3d85552a5dadaa48d1204658b702b72CAS | 16473893PubMed |

Smirnoff N (1996) The function and metabolism of ascorbic acid in plants. Annals of Botany 78, 661–669.
The function and metabolism of ascorbic acid in plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFKrtg%3D%3D&md5=750e610051390fc67cd6ef33cb38e995CAS |

Speer M, Kaiser WM (1991) Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity. Plant Physiology 97, 990–997.
Ion relations of symplastic and apoplastic space in leaves from Spinacia oleracea L. and Pisum sativum L. under salinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhvVGqtA%3D%3D&md5=9b411269b28c35e71681893cf8612f36CAS | 16668541PubMed |

Sulpice R, Gibon Y, Bouchereau A, Larher F (1998) Exogenously supplied glycine betaine in spinach and rapeseed leaf discs: compatibility or non-compatibility? Plant, Cell & Environment 21, 1285–1292.
Exogenously supplied glycine betaine in spinach and rapeseed leaf discs: compatibility or non-compatibility?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXht1Wmt70%3D&md5=44e5e40cbca33e4a40dc54cef9f424e1CAS |

Sulpice R, Tsukaya H, Nonaka H, Mustardy L, Chen THH, Murata N (2003) Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. The Plant Journal 36, 165–176.
Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1OgtLw%3D&md5=615c80fe0fe92953156580500c3ced53CAS | 14535882PubMed |

Szabados L, Savoure A (2010) Proline: a multifunctional amino acid. Trends in Plant Science 15, 89–97.
Proline: a multifunctional amino acid.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhs1yit7s%3D&md5=3b58d0a7f0d410c4f355b83209f87bf2CAS | 20036181PubMed |

Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends in Plant Science 13, 178–182.
How do environmental stresses accelerate photoinhibition?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXksleisrY%3D&md5=bb3fda68a44f04709591091b4d11ebb1CAS | 18328775PubMed |

Triantaphylides C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology 148, 960–968.
Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1GmtLvE&md5=e44c5638977050989961804959357d9aCAS | 18676660PubMed |

Wang LW, Showalter AM (2004) Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata. Physiologia Plantarum 120, 405–412.
Cloning and salt-induced, ABA-independent expression of choline mono-oxygenase in Atriplex prostrata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXisVKhsrk%3D&md5=0f6f8899d18f004284372ba8bc64e1dbCAS | 15032837PubMed |

Wellburn AR (1994) The spectral determination of chlorophyll-a and chlorophyll-b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology 144, 307–313.

Weretilnyk EA, Bednarek S, Mccue KF, Rhodes D, Hanson AD (1989) Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta 178, 342–352.
Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkslCrtbs%3D&md5=f1226576ced20958b0500c9fd4b6db5bCAS |

Wood LG, Gibson PG, Garg ML (2006) A review of the methodology for assessing in vivo antioxidant capacity. Journal of the Science of Food and Agriculture 86, 2057–2066.
A review of the methodology for assessing in vivo antioxidant capacity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFajsrzO&md5=0f77807ecde1f0ab266c467e0fb8e2a1CAS |

Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN (1982) Living with water-stress – evolution of osmolyte systems. Science 217, 1214–1222.
Living with water-stress – evolution of osmolyte systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XlsFyisbw%3D&md5=dcae51bbaa77aec868807c5e5ff4c3deCAS | 7112124PubMed |

Yang XH, Lu CM (2005) Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants. Physiologia Plantarum 124, 343–352.
Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXlvFGisbY%3D&md5=8b592297c949477e73c39d227d95d118CAS |

Yang XH, Wen XG, Gong HM, Lu QT, Yang ZP, Tang YL, Liang Z, Lu CM (2007) Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants. Planta 225, 719–733.
Genetic engineering of the biosynthesis of glycinebetaine enhances thermotolerance of photosystem II in tobacco plants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1yht7w%3D&md5=5da6cfea81ac7042409aafa7079d44ebCAS | 16953431PubMed |