Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE (Open Access)

Evolutionary biogeography of Australian jumping spider genera (Araneae : Salticidae)

Barry J. Richardson https://orcid.org/0000-0001-9330-4713
+ Author Affiliations
- Author Affiliations

Australian National Insect Collection, National Research Collections Australia, CSIRO, Canberra, ACT 2600, Australia. Email: barry.richardson@csiro.au

Australian Journal of Zoology 67(3) 162-172 https://doi.org/10.1071/ZO20023
Submitted: 29 April 2020  Accepted: 13 July 2020   Published: 28 July 2020

Journal Compilation © CSIRO 2019 Open Access CC BY-NC

Abstract

Phylogenetic relationships and estimated dates of origin, plus distributional, ecological and morphological data for salticid genera were used to examine a series of hypotheses related to the evolution of the Australian salticid fauna. Though independent, the time patterns of evolution of genera in Australia and South America were similar, while that for Northern Hemisphere taxa differed. In each case the production of new genera occurred during the warmer parts of the mid Tertiary but not during cooler and drier times. Asian elements entered Australia as early as 31 million years ago, long before the collision of the Australasian and Asian continental plates. Endemic and derivatives of Asian genera were similarly distributed across Australian biomes. However, arriving taxa were more successful when conditions matched their mesic origins (tropical), but less so when different (temperate). While endemic genera often extended their ranges into drier environments by increasing the number of species, recent arrivals did so by extending the range of individual species. Maximum Parsimony analyses of a range of presumed adaptive, morphological and ecological characters showed these did not reflect genus-level processes; however, the analysis did show all endemic genera had mesic origins.

Additional keywords: Gondwana, macroevolution, Miocene fauna, Oligocene fauna, South America, spiders.


References

Agnarsson, I., and Rayor, L. S. (2013). A molecular phylogeny of Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour. Molecular Phylogenetics and Evolution 69, 895–905.
A molecular phylogeny of Australian huntsman spiders (Sparassidae, Deleninae): implications for taxonomy and social behaviour.Crossref | GoogleScholarGoogle Scholar | 23831456PubMed |

Barlow, B. A. (1985). A revised natural regions map for Australia. Brunonia 8, 387–392.
A revised natural regions map for Australia.Crossref | GoogleScholarGoogle Scholar |

Black, K. H., Archer, M., Hand, S. J., and Godhelp, H. (2012). The rise of Australian marsupials: a synopsis of biostratigraphic, phylogenetic, palaeoecologic and palaeobiogeographic understanding. In ‘Earth and Life’ (Ed. J. A. Talent.) pp. 983–1078. (Springer Science + Business Media.)

Bodner, M. R., and Maddison, W. P. (2012). The biogeography and age of salticid spider radiations (Araneae: Salticidae). Molecular Phylogenetics and Evolution 65, 213–240.
The biogeography and age of salticid spider radiations (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 22735169PubMed |

Bowman, D. M. J. S., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., Ford, F, Haberle, S, Hughes, J, Isagi, Y, Joseph, L, McBride, J, Nelson, G, and Ladiges, P. Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
Biogeography of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |

Boyer, S. L., Markle, T. M., Luxbacher, A. M., and Kozak, K. H. (2016). Historical refugia have shaped biogeographical patterns of species richness and phylogenetic diversity in mite harvestmen (Arachnida, Opiliones, Cyphophthalmi) endemic to the Australian wet tropics. Journal of Biogeography 43, 1400–1411.
Historical refugia have shaped biogeographical patterns of species richness and phylogenetic diversity in mite harvestmen (Arachnida, Opiliones, Cyphophthalmi) endemic to the Australian wet tropics.Crossref | GoogleScholarGoogle Scholar |

Brennan, I. G., and Keogh, J. S. (2018). Miocene biome turnover drove conservative body size evolution across Australian vertebrates. Proceedings. Biological Sciences 285, 20181474.
Miocene biome turnover drove conservative body size evolution across Australian vertebrates.Crossref | GoogleScholarGoogle Scholar | 30333208PubMed |

Brennan, I. G., and Oliver, P. M. (2017). Mass turnover and recovery dynamics of a diverse Australian continental radiation. Evolution 71, 1352–1365.
Mass turnover and recovery dynamics of a diverse Australian continental radiation.Crossref | GoogleScholarGoogle Scholar | 28213971PubMed |

Bridgewater, P. B. (1987). The present Australian environment – terrestrial and freshwater. In ‘Fauna of Australia. Vol. 1A. General Articles’. (Eds G. R. Dyne, and D. W. Walton.) pp. 69–100. (AGPS: Canberra.)

Byrne, M., Yeates, D. K., Joseph, L., Kearney, M., Bowler, J., Williams, M. A. J., Cooper, S, Donnellan, S. C., Keogh, J. S., Leys, R, Melville, J, Murphy, D. J., Porch, N, and Wyrwoll, K.‐H. (2008). Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17, 4398–4417.
Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota.Crossref | GoogleScholarGoogle Scholar | 18761619PubMed |

Byrne, M., Steane, D. A., Joseph, L., Yeates, D. K., Jordan, G. J., Crayn, D, Aplin, K, Cantrill, D. J., Cook, L. G., Crisp, M. D., Keogh, J. S., Melville, J, Moritz, C, Porch, N, Sniderman, J. M. K., Sunnucks, P, and Weston, P. H. (2011). Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. Journal of Biogeography 38, 1635–1656.
Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota.Crossref | GoogleScholarGoogle Scholar |

Carrapa, B., Clementz, M., and Ran, F. (2019). Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the late Miocene cooling. Proceedings of the National Academy of Sciences of the United States of America 116, 9747–9752.
Ecological and hydroclimate responses to strengthening of the Hadley circulation in South America during the late Miocene cooling.Crossref | GoogleScholarGoogle Scholar | 31036635PubMed |

Cassis, G., Laffan, S. W., and Ebach, M. C. (2017). Biodiversity and bioregionalisation perspectives on the historical biogeography of Australia. In ‘Handbook of Australian Biogeography’. (Ed. M. C. Ebach.) pp. 1–16. (CRC Press: Boca Raton, USA.)

Chapman, A. D. (2009). Numbers of Living Species in Australia and the World. 2nd Edn. A report for the Australian Biological Resources Study 2009. Australian Biodiversity Information Services, Toowoomba, Australia.

Clotten, C., Stein, R., Fahl, K., Schreck, M., Risebrobakken, B., and de Schepper, S. (2019). On the causes of Arctic sea ice in the warm early Pliocene. Scientific Reports 9, 989.
On the causes of Arctic sea ice in the warm early Pliocene.Crossref | GoogleScholarGoogle Scholar | 30700730PubMed |

Crayn, D. M., Costion, C., and Harrington, M. G. (2015). The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics. Journal of Biogeography 42, 11–24.
The Sahul–Sunda floristic exchange: dated molecular phylogenies document Cenozoic intercontinental dispersal dynamics.Crossref | GoogleScholarGoogle Scholar |

Crisp, M. D., and Cook, L. G. (2013). How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective. Annual Review of Ecology, Evolution, and Systematics 44, 303–324.
How was the Australian flora assembled over the last 65 million years? A molecular phylogenetic perspective.Crossref | GoogleScholarGoogle Scholar |

Crisp, M., Cook, L., and Steane, D. (2004). Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359, 1551–1571.
Radiation of the Australian flora: what can comparisons of molecular phylogenies across multiple taxa tell us about the evolution of diversity in present-day communities?Crossref | GoogleScholarGoogle Scholar | 15519972PubMed |

Crisp, M. D., Trewick, S. A., and Cook, L. G. (2011). Hypothesis testing in biogeography. Trends in Ecology & Evolution 26, 66–72.
Hypothesis testing in biogeography.Crossref | GoogleScholarGoogle Scholar |

Ebach, M. C. (2017). ‘Handbook of Australian Biogeography.’ pp. 11–375. (CRC Press: Boca Raton, USA.)

Faurby, S., and Antonelli, A. (2018). Evolutionary and ecological success is decoupled in mammals. Journal of Biogeography 45, 2227–2237.
Evolutionary and ecological success is decoupled in mammals.Crossref | GoogleScholarGoogle Scholar | 31217658PubMed |

Folk, R. A., Stubbs, R. L., Mort, M. E., Cellinese, N., Allen, J. M., Soltis, P. S., Soltis, D. E., and Guralnick, R. P. (2019). Rates of niche and phenotype evolution lag behind diversification in a temperate radiation. Proceedings of the National Academy of Sciences of the United States of America 116, 10874–10882.
Rates of niche and phenotype evolution lag behind diversification in a temperate radiation.Crossref | GoogleScholarGoogle Scholar | 31085636PubMed |

Forrest, M., Eronen, J. T., Utescher, T., Knorr, G., Stepanek, C., Lohmann, G., and Hickler, T. (2015). Climate–vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene. Climate of the Past 11, 1701–1732.
Climate–vegetation modelling and fossil plant data suggest low atmospheric CO2 in the late Miocene.Crossref | GoogleScholarGoogle Scholar |

Greenwood, D. R., and Christophel, D. C. (2015). The origins and Tertiary history of Australian “tropical” rainforests. In ‘Tropical Rainforests: Past, Present and Future’. (Eds E. Bermingham, C. W. Dick, and C. Moritz.) pp. 322–335. (University of Chicago: Chicago.)

Groeneveld, J., Hendriks, J., Renema, W., McHugh, C. M., De Vleeschouwer, D., Christensen, B. A., Fulthorpe, C. S., Reuning, L, Gallagher, S. J., Bogus, K, Auer, G, Ishiwa, T, Expedition 356 Scientists (2017). Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies. Science Advances 3, e1602567.
Australian shelf sediments reveal shifts in Miocene Southern Hemisphere westerlies.Crossref | GoogleScholarGoogle Scholar | 28508066PubMed |

Harmon, L. J., Losos, J. B., Davies, T. J., Gillespie, R. G., Gittleman, J. L., Jennings, W. B., Kozak, K. H., McPeek, M. A., Moreno‐Roark, F, Near, T. J., Purvis, A, Ricklefs, R. E., Schluter, D, Schulte, J. A., Seehausen, O, Sidlauskas, B. L., Torres‐Carvajal, O, Weir, J. T., and Mooers, A. Ø (2010). Early bursts of body size and shape evolution are rare in comparative data. Evolution 64, 2385–2396.
Early bursts of body size and shape evolution are rare in comparative data.Crossref | GoogleScholarGoogle Scholar | 20455932PubMed |

Harmon, L. J., Andreazzi, C. S., Debarre, F., Drury, J., Goldberg, E. E., Martins, A. B., Melián, C. J., Narwani, A, Nuismer, S. L., Pennell, M. W., Rudman, S. M., Seehausen, O, Silvestro, D, Weber, M, and Matthews, B (2019). Detecting the macroevolutionary signal of species interactions. Journal of Evolutionary Biology 32, 769–782.
Detecting the macroevolutionary signal of species interactions.Crossref | GoogleScholarGoogle Scholar | 30968509PubMed |

Harms, D., Laffan, S. W., and Ebach, S. A. (2018). Speciation patterns in complex subterranean environments: a case study using short-tailed whipscorpions (Schisomida: Hubbardiida). Biological Journal of the Linnean Society 125, 355–367.
Speciation patterns in complex subterranean environments: a case study using short-tailed whipscorpions (Schisomida: Hubbardiida).Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Rix, M. G., Harms, D., Giribet, G., Vink, C. J., and Walter, D. E. (2017). The biogeography of Australasian arachnids. In ‘Handbook of Australian Biogeography’ (Ed. M. C. Ebach.) pp. 241–267. (CRC Press: Boca Raton, USA.)

Hendricks, J. R., Saupe, E. E., Myers, C. E., Hermsen, E. J., and Allmon, W. D. (2014). The generification of the fossil record. Paleobiology 40, 511–528.
The generification of the fossil record.Crossref | GoogleScholarGoogle Scholar |

Herbert, T. D., Lawrence, K. T., Tzanova, A., Peterson, L. C., Caballero-Gill, R., and Kelly, C. S. (2016). Late Miocene global cooling and the rise of modern ecosystems. Nature Geoscience 9, 843–847.
Late Miocene global cooling and the rise of modern ecosystems.Crossref | GoogleScholarGoogle Scholar |

Jablonski, D (2005). Mass extinctions and macroevolution. Paleobiology 31, 192–210.

Jordan, T. E., Kirk-Lawler, N. E., Blanco, P. N., Rech, J. A., and Cosentino, N. J. (2014). Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile. Geological Society of America Bulletin 126, 1016–1046.
Landscape modification in response to repeated onset of hyperarid paleoclimate states since 14 Ma, Atacama Desert, Chile.Crossref | GoogleScholarGoogle Scholar |

Le Roux, J. P. (2012). A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 2: continental conditions. Sedimentary Geology 247–248, 21–38.
A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 2: continental conditions.Crossref | GoogleScholarGoogle Scholar |

Lemen, C. A., and Freeman, P. W. (1984). The genus: a macroevolutionary problem. Evolution 38, 1219–1237.
The genus: a macroevolutionary problem.Crossref | GoogleScholarGoogle Scholar | 28563772PubMed |

Maddison, W. P., and Maddison, D. R. (2018). Mesquite: a modular system for evolutionary analysis. Version 3.6. Available at: http://mesquiteproject.org [accessed September 2019].

Marin, J., Donnellan, S. C., Hedges, S. B., Doughty, P., Hutchinson, M. N., Cruaud, C., and Vidal, N. (2013). Tracing the history and biogeography of the Australian blindsnake radiation. Journal of Biogeography 40, 928–937.
Tracing the history and biogeography of the Australian blindsnake radiation.Crossref | GoogleScholarGoogle Scholar |

Oberski, J. T., Sharma, P. P., Jay, K. R., Coblens, M. J., Lemon, K. A., Johnson, J. E., and Boyer, S. L. (2018). A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphothalmi) elucidates ancient diversification dynamics in the Australian wet tropics. Molecular Phylogenetics and Evolution 127, 813–822.
A dated molecular phylogeny of mite harvestmen (Arachnida: Opiliones: Cyphothalmi) elucidates ancient diversification dynamics in the Australian wet tropics.Crossref | GoogleScholarGoogle Scholar | 29935300PubMed |

Richardson, B. J. (2017). The nature and distribution of jumping spider (Aranaea: Salticidae) diversity on Pungalina and Seven Emu Stations. In ‘Pungalina Wetlands Scientific Study Report. Geography Monograph Series No. 14.’ pp. 47–56. (The Royal Geographical Society of Queensland: Brisbane.)

Richardson, B. J. (2019). Salticidae. Arachnida: Araneomorphae. Australian Faunal Directory. Australian Biological Resources Study, Canberra. Available at: https://biodiversity.org.au/afd/taxa/SALTICIDAE [accessed September 2019].

Richardson, B. J., Zabka, M., Gray, M. R., and Milledge, G. (2006). Distribution patterns of jumping spiders (Araneae: Salticidae) in Australia. Journal of Biogeography 33, 707–719.
Distribution patterns of jumping spiders (Araneae: Salticidae) in Australia.Crossref | GoogleScholarGoogle Scholar |

Richardson, B. J., Whyte, R., and Zabka, M. (2019). A key to the genera of Australian jumping spiders (Araneae: Salticidae). Available at https://apps.lucidcentral.org/salticidae/ [accessed September 2019].

Rix, M. G., and Harvey, M. S. (2012a). Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia. Molecular Phylogenetics and Evolution 62, 375–396.
Phylogeny and historical biogeography of ancient assassin spiders (Araneae: Archaeidae) in the Australian mesic zone: evidence for Miocene speciation within Tertiary refugia.Crossref | GoogleScholarGoogle Scholar | 22040763PubMed |

Rix, M. G., and Harvey, M. S. (2012b). Australian assassins, Part II: a review of the new assassin spider genus Zephyrarchaea (Araneae, Archaeidae) from southern Australia. ZooKeys 191, 1–62.
Australian assassins, Part II: a review of the new assassin spider genus Zephyrarchaea (Araneae, Archaeidae) from southern Australia.Crossref | GoogleScholarGoogle Scholar |

Rix, M. G., Costion, C., and Harrington, J. D. (2015). Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot. Biological Reviews of the Cambridge Philosophical Society 90, 762–793.
Biogeography and speciation of terrestrial fauna in the south-western Australian biodiversity hotspot.Crossref | GoogleScholarGoogle Scholar | 25125282PubMed |

Segar, S. T., Fayle, T. M., Srivastava, D. S., Lewinsohn, T. M., Lewis, O. T., Novotny, V., Kitching, R. L., and Maunsell, S. C. (2020). The role of evolution in shaping ecological networks. Trends in Ecology & Evolution 35, 454–466.
The role of evolution in shaping ecological networks.Crossref | GoogleScholarGoogle Scholar |

Sepkoski, D. (2012). ‘Rereading the Fossil Record: The Growth of Paleobiology as an Evolutionary Discipline.’ (University of Chicago: Chicago.)

Skinner, A., Hutchinson, M. N., and Lee, M. S. Y. (2013). Phylogeny and divergence times of Australian Sphenomorphus group skinks (Scincidae, Squamata). Molecular Phylogenetics and Evolution 69, 906–918.
Phylogeny and divergence times of Australian Sphenomorphus group skinks (Scincidae, Squamata).Crossref | GoogleScholarGoogle Scholar | 23810993PubMed |

Slater, G. J., and Friscia, A. R. (2019). Hierarchy in adaptive radiation: a case study using the Carnivora (Mammalia). Evolution 73, 524–539.
Hierarchy in adaptive radiation: a case study using the Carnivora (Mammalia).Crossref | GoogleScholarGoogle Scholar | 30690704PubMed |

Zhang, J., and Maddison, W. P. (2013). Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution 68, 81–92.
Molecular phylogeny, divergence times and biogeography of spiders of the subfamily Euophryinae (Araneae: Salticidae).Crossref | GoogleScholarGoogle Scholar | 23542001PubMed |