Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Habitat associations of zoophagic bat ensembles in north-western Australia

N. L. McKenzie https://orcid.org/0000-0002-1316-8772 A C , R. D. Bullen https://orcid.org/0000-0002-1529-1942 B and L. A. Gibson A
+ Author Affiliations
- Author Affiliations

A Science and Conservation Division, Department of Biodiversity, Conservation and Attractions (DBCA), Bentley, WA 6983, Australia.

B 43 Murray Drive, Hillarys, WA 6025, Australia.

C Corresponding author. Email: norman.mckenzie1@gmail.com

Australian Journal of Zoology 67(6) 243-259 https://doi.org/10.1071/ZO19049
Submitted: 15 July 2019  Accepted: 5 December 2019   Published: 9 January 2020

Abstract

North-western Australia comprises the Kimberley Craton and parts of three adjacent sedimentary basins. It has a tropical climate and habitats that range from semiarid plains supporting grasslands to mesic uplands supporting woodlands as well as narrow riparian forests and patches of rainforest; mangrove forests occur along the coast. Its bat fauna comprises three obligate phytophages and 27 obligate zoophages. Analysis of zoophagic bats at 171 sites scattered throughout this study area revealed two compositionally distinct ensembles. One, comprising 19 species, occupies mangrove forest and includes three species known only to occupy mangroves in Western Australia. The other, comprising 20 species, occupies landward habitats and includes four species that are found only in landward ecosystems. Both ensembles are structured in terms of resource allocation, but nestedness observed in assemblage composition can be explained by environmental factors, implying the influence of environmental controls. Sixteen species belong to both ensembles, but seven of these require cave roosts and occur only near cavernous country while three others are confined to rocky riparian habitats. The richest assemblages were recorded in rugged cavernous landscapes in complex vegetation structures near permanent freshwater pools in the most mesic areas.

Additional keywords: GDM, Kimberley, mangrove


References

ALA (2018). Atlas of Living Australia. Available at: http://www.ala.org.au [accessed 8 October 2018].

Armstrong, D. P. (2005). Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species. Conservation Biology 19, 1402–1410.
Integrating the metapopulation and habitat paradigms for understanding broad-scale declines of species.Crossref | GoogleScholarGoogle Scholar |

Austin, M. P. (1991). Vegetation theory in relation to cost-efficient survey. In ‘Nature Conservation: Cost Effective Biological Surveys and Data Analysis’. (Eds C. R. Margules, and M. P. Austin.) pp. 17–22. (CSIRO Division of Wildlife and Ecology: Canberra.)

Austin, M. P., and McKenzie, N. J. (1988). Data analysis. In ‘Australian Soil and Land Survey Handbook: Guidelines for Conducting Surveys’. (Eds R. H. Gunn, J. A. Beattie, R. E. Reid, and R. H. M. van der Graaff.) pp. 210–232. (Inkata Press: Melbourne and Sydney.)

Beard, J. S. (1981). Vegetation of central Australia. In ‘Flora of Central Australia’. (Ed. J. S. Beard.) pp. 21–26. (Reed: Sydney.)

Belbin, L. (1980). TWOSTEP: a program incorporating asymmetric comparisons that uses two steps to produce a dissimilarity matrix. CSIRO Division of Land Use Research Technical Memorandum 80/9. CSIRO, Canberra.

Belbin, L. (1995). ‘PATN Technical Reference.’ (CSIRO Division of Wildlife and Ecology: Canberra.)

Blakey, R. V., Law, B. S., Straka, T. M., Kingsford, R. T., and Milne, D. J. (2018). Importance of wetlands to bats on a dry continent: a review and meta-analysis. Hystrix – Italian Journal of Mammalogy 29, 41–52.
Importance of wetlands to bats on a dry continent: a review and meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Borcard, D., Legendre, P., and Drapeau, P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055.
Partialling out the spatial component of ecological variation.Crossref | GoogleScholarGoogle Scholar |

Bullen, R. D., and McKenzie, N. L. (2001). Bat airframe design – flight performance, stability and control in relation to foraging ecology. Australian Journal of Zoology 49, 235–261.
Bat airframe design – flight performance, stability and control in relation to foraging ecology.Crossref | GoogleScholarGoogle Scholar |

Bullen, R. D., and McKenzie, N. L. (2004). Bat flight muscle mass: implications for foraging strategy. Australian Journal of Zoology 52, 605–622.
Bat flight muscle mass: implications for foraging strategy.Crossref | GoogleScholarGoogle Scholar |

Bullen, R. D., and McKenzie, N. L. (2005). Seasonal range variation of Tadarida australis (Chiroptera: Molossidae) in Western Australia: the impact of enthalpy. Australian Journal of Zoology 53, 145–156.
Seasonal range variation of Tadarida australis (Chiroptera: Molossidae) in Western Australia: the impact of enthalpy.Crossref | GoogleScholarGoogle Scholar |

Bullen, R. D., and McKenzie, N. L. (2007). Bat wing airfoil and planform structures relating to aerodynamic cleanliness. Australian Journal of Zoology 55, 237–247.
Bat wing airfoil and planform structures relating to aerodynamic cleanliness.Crossref | GoogleScholarGoogle Scholar |

Bullen, R. D., McKenzie, N. L., Bullen, K. E., and Williams, M. R. (2009). Bat heart mass: correlation with foraging niche and roost preference. Australian Journal of Zoology 57, 399–408.
Bat heart mass: correlation with foraging niche and roost preference.Crossref | GoogleScholarGoogle Scholar |

Bullen, R. D., McKenzie, N. L., and Cruz-Neto, A. P. (2016). Characteristic flight speeds in bats. CEAS Aeronautical Journal 7, 621–643.
Characteristic flight speeds in bats.Crossref | GoogleScholarGoogle Scholar |

Burbidge, A. A., McKenzie, N. L., Brennan, K. E. C., Woinarski, J. C. Z., Dickman, C. R., Baynes, A., Gordon, G., Menkhorst, P. W., and Robinson, A. C. (2008). Conservation status and biogeography of Australia’s terrestrial mammals. Australian Journal of Zoology 56, 411–422.
Conservation status and biogeography of Australia’s terrestrial mammals.Crossref | GoogleScholarGoogle Scholar |

Cannicci, S., Burrows, D., Fratini, S., Smith, T. J., Offenburg, J., and Dahdouh-Guebas, F. (2008). Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review. Aquatic Botany 89, 186–200.
Faunal impact on vegetation structure and ecosystem function in mangrove forests: a review.Crossref | GoogleScholarGoogle Scholar |

Chambers, C. L., Cushman, S., Medina-Fitoria, A., Martinez-Fonseca, J., and Chavez-Velasquez, M. (2016). Influences of scale on bat habitat relationships in a forested landscape in Nicaragua. Landscape Ecology 31, 1299–1318.
Influences of scale on bat habitat relationships in a forested landscape in Nicaragua.Crossref | GoogleScholarGoogle Scholar |

Churchill, S. K. (1991). Distribution, abundance and roost selection of the orange horseshoe-bat, Rhinonycteris aurantius, a tropical cave-dweller. Wildlife Research 18, 343–353.
Distribution, abundance and roost selection of the orange horseshoe-bat, Rhinonycteris aurantius, a tropical cave-dweller.Crossref | GoogleScholarGoogle Scholar |

Churchill, S. (2008). ‘Australian Bats.’ 2nd edn. (Allen & Unwin: Sydney.)

Churchill, S. K., Milne, D. J., and Kitchener, D. J. (2008). Pygmy long-eared bat Nyctophilus walkeri Thomas 1892. In ‘The Mammals of Australia’. (Eds S. Van Dyck, and R. Strahan.) pp. 529–530. (Reed New Holland: Sydney.)

Clarke, K. R. (1993). Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 6, 163–174.

Clarke, K. R., and Green, R. H. (1988). Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series 46, 213–226.
Statistical design and analysis for a ‘biological effects’ study.Crossref | GoogleScholarGoogle Scholar |

Coelho, M. T. P., Dambros, C., Rosauer, D. F., Pereira, E. B., and Rangel, T. F. (2018). Effects of neutrality and productivity on mammal richness and evolutionary history in Australia. Ecography 41, 1–10.

Colwell, R. K. (2013). EstimateS: statistical estimation of species richness and shared species from samples. Version 9. Available at: purl.org/estimates

Cresswell, I. D., and Semeniuk, V. (2011). Mangroves of the Kimberley Coast: ecological patterns in a tropical ria coast setting. Journal of the Royal Society of Western Australia 94, 213–237.

Crome, F. H. J., and Richards, G. C. (1988). Bats and gaps: microchiropteran community structure in a Queensland rain forest. Ecology 69, 1960–1969.
Bats and gaps: microchiropteran community structure in a Queensland rain forest.Crossref | GoogleScholarGoogle Scholar |

Cross, S. P. (1988). Riparian systems and small mammals and bats. In ‘Streamside Management: Riparian Wildlife and Forestry Interactions’. (Ed. K. J. Raedeke.) pp. 93–112. University of Washington Institute of Forest Resources Contribution 59, 1–277.

Denzinger, A. D., Tschapka, M., and Schnitzler, H.-U. (2018). The role of echolocation strategies for niche differentiation in bats. Canadian Journal of Zoology 96, 171–181.
The role of echolocation strategies for niche differentiation in bats.Crossref | GoogleScholarGoogle Scholar |

Dickman, C. R., and Crowther, M. S. (2008). Science and the environment. In ‘Environmental Biology’. (Eds M. C. Calver, A. Lymbery, J. McComb, and M. Bamford.) pp. 23–42. (Cambridge University Press: Cambridge.)

Dixon, J. M., and Lumsden, L. F. (2008). Gould’s wattled bat Chalinolobus gouldii (Gray, 1841). In ‘The Mammals of Australia’. (Eds S. Van Dyck, and R. Strahan.) pp 533–534. (Reed New Holland: Sydney.)

DSEWPaC (2012). Interim biogeographic regionalisation for Australia (IBRA), Version 7 (Subregions) – States and Territories. Department of Sustainability, Environment, Water, Population and Communities, Canberra. Available at: http://www.environment.gov.au/topics/land/nationalreserve-system/science-maps-and-data/australias-bioregions-ibra

Duffy, A. M., Lumsden, L., Caddle, C. R., Chick, R. R., and Newell, G. R. (2000). The efficacy of Anabat ultrasonic detectors and harp traps for surveying microchiropterans in south-eastern Australia. Acta Chiropterologica 2, 127–144.

Duke, N. (2006). ‘Australia’s Mangroves. The Authoritative Guide to Australia’s Mangrove Plants.’ (University of Queensland: Brisbane.)

Eldridge, M. D., Potter, S., and Cooper, S. J. B. (2011). Biogeographic barriers in north-western Australia: an overview and standardisation of nomenclature. Australian Journal of Zoology 59, 270–272.
Biogeographic barriers in north-western Australia: an overview and standardisation of nomenclature.Crossref | GoogleScholarGoogle Scholar |

Fauth, J. E., Bernardo, J., Camara, M., Resetarits, W. J., Van Buskirk, J, and McCollum, S. A. (1996). Simplifying the jargon of community ecology: a conceptual approach. American Naturalist 147, 282–286.
Simplifying the jargon of community ecology: a conceptual approach.Crossref | GoogleScholarGoogle Scholar |

Ferrier, S., Manion, G., Elith, J., and Richardson, K. (2007). Using generalised dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity & Distributions 13, 252–264.
Using generalised dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment.Crossref | GoogleScholarGoogle Scholar |

Fischer, J., Stott, J., Law, B. S., Adams, M., and Forrester, R. I. (2009). Designing effective habitat studies: quantifying multiple sources of variability in bat activity. Acta Chiropterologica 11, 127–137.
Designing effective habitat studies: quantifying multiple sources of variability in bat activity.Crossref | GoogleScholarGoogle Scholar |

Ford, J. (1982). Origin, evolution and speciation of birds specialised to mangroves in Australia. Emu 82, 12–23.
Origin, evolution and speciation of birds specialised to mangroves in Australia.Crossref | GoogleScholarGoogle Scholar |

Friend, G. R., Morris, K. D., and McKenzie, N. L. (1991). The mammal fauna of Kimberley rainforests. In ‘Kimberley Rainforests of Australia’. (Eds N. L. McKenzie, R. B. Johnston, and P. G. Kendrick.) pp. 45–61. (Surrey Beatty: Sydney.)

Fritz, S. A., Eronen, J. T., Schnitzler, J., Hof, C., Janis, C. M., Mulch, A., Böhning-Gaese, K., and Graham, C. H. (2016). Twenty-million-year relationship between mammalian diversity and primary productivity. Proceedings of the National Academy of Sciences of the United States of America 113, 10908–10913.
Twenty-million-year relationship between mammalian diversity and primary productivity.Crossref | GoogleScholarGoogle Scholar | 27621451PubMed |

Gannon, W. L., Sherwin, R. E., and Haymond, S. (2003). On the importance of articulating assumptions when conducting acoustic studies of habitat use by bats. Wildlife Society Bulletin 31, 45–61.

Hawkins, B. A., Field, R., Cornell, H. V., Currie, D. J., Guégan, J. F., Kaufman, D. M., Kerr, J. T., Mittelbach, G. G., Oberdorff, T., O’Brien, E. M., and Porter, E. E. (2003). Energy, water, and broad-scale geographic patterns of species richness. Ecology 84, 3105–3117.
Energy, water, and broad-scale geographic patterns of species richness.Crossref | GoogleScholarGoogle Scholar |

Hernández, L., Romero, A. G., Laundré, J. W., Lightfoot, D., Aragón, E., and López Portillo, J. (2005). Changes in rodent community structure in the Chihuahuan Desert México: comparisons between two habitats. Journal of Arid Environments 60, 239–257.
Changes in rodent community structure in the Chihuahuan Desert México: comparisons between two habitats.Crossref | GoogleScholarGoogle Scholar |

Holguin, G., Vazques, P., and Bashen, Y. (2001). The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biology and Fertility of Soils 33, 265–278.
The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview.Crossref | GoogleScholarGoogle Scholar |

Hubbell, S. P. (2001). ‘The Unified Neutral Theory of Biodiversity and Biogeography.’ (Princeton University Press: Princeton, NJ.)

Kathiresan, K., and Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology 40, 81–251.
Biology of mangroves and mangrove ecosystems.Crossref | GoogleScholarGoogle Scholar |

Kitchener, D. J., Keller, L. E., Chapman, A., McKenzie, N. L., Start, A. N., and Kenneally, K. F. (1981). Observations on mammals of the Mitchell Plateau area, Kimberley, Western Australia. In ‘Biological Survey of Mitchell Plateau and Admiralty Gulf, Kimberley, Western Australia’ pp. 123–168 (Western Australian Museum: Perth.)

Kuenzi, A. J., and Morrison, M. L. (2003). Temporal patterns of bat activity in southern Arizona. Journal of Wildlife Management 67, 52–64.
Temporal patterns of bat activity in southern Arizona.Crossref | GoogleScholarGoogle Scholar |

Lacerda, L. D. (Ed.) (2002). ‘Mangrove Ecosystems: Function and Management.’ (Springer: Berlin.)

Law, B., Anderson, J., and Chidel, M. (1998). A bat survey in state forests on the south-west slopes region of New South Wales with suggestions of improvements for future surveys. Australian Zoologist 30, 467–479.
A bat survey in state forests on the south-west slopes region of New South Wales with suggestions of improvements for future surveys.Crossref | GoogleScholarGoogle Scholar |

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M., Hoopes, M. F., Holt, R. D., Shurin, J. B., Law, R, Tilman, D, Loreau, M, and Gonzalez, A (2004). The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7, 601–613.
The metacommunity concept: a framework for multi-scale community ecology.Crossref | GoogleScholarGoogle Scholar |

Leibold, M. A., Economo, E. P., and Peres-Neto, P. (2010). Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecology Letters 13, 1290–1299.
Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography.Crossref | GoogleScholarGoogle Scholar | 20735465PubMed |

Lönnberg, E. (1913). Mammals. In ‘Results of Dr E. Mjöberg’s Swedish Scientific Expeditions to Australia 1910–1913’. Kongl. Svenska Vetensk. Acad. Handl. 52, 1–10.

Lumsden, L. F., Churchill, S., and Schultz, M. (2005). Bat survey of the Ord River stage 2 M2 study area, Western Australia. Unpublished Report for the Western Australian Department of Industry and Resources. Department of Sustainability and Environment, Melbourne.

Manion, G., Lisk, M., Ferrier, S., Nieto‐Lugilde, D., Mokany, K., and Fitzpatrick, M. C. (2018). Package gdm: Generalized Dissimilarity Modelling. Package gdm: Functions for Generalized Dissimilarity Modelling; version 1.3.11.

May, J. E., and McKenzie, N. L. (eds) (2003). A Biodiversity Audit of Western Australia’s 53 Bioregional Subregions in 2002. Department of Conservation and Land Management, Perth.

McConville, A., Law, B., and Mahony, M. (2013). Are regional habitat models useful at a local-scale? A Case study of threatened and common insectivorous bats in south-eastern Australia. PLoS One 8, e72420.
Are regional habitat models useful at a local-scale? A Case study of threatened and common insectivorous bats in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar | 23977296PubMed |

McKenzie, N. L. (1983). Mammals. In ‘Wildlife of the Dampier Peninsula, South-west Kimberley, Western Australia’. (Ed. N. L. McKenzie.) pp 40–52. Western Australian Wildlife Research Bulletin No. 11. (Department of Fisheries and Wildlife: Perth.)

McKenzie, N. L., and Bullen, R. D. (2009). The echolocation calls, habitat relationships, foraging niches and communities of Pilbara microbats. Records of the Western Australian Museum 78, 123–155.
The echolocation calls, habitat relationships, foraging niches and communities of Pilbara microbats.Crossref | GoogleScholarGoogle Scholar |

McKenzie, N. L., and Bullen, R. D. (2012). An acoustic survey of zoophagic bats on islands in the Kimberley, Western Australia, including data on the echolocation ecology, organisation and habitat relationships of regional communities. Records of the Western Australian Museum 81, 67–108.
An acoustic survey of zoophagic bats on islands in the Kimberley, Western Australia, including data on the echolocation ecology, organisation and habitat relationships of regional communities.Crossref | GoogleScholarGoogle Scholar |

McKenzie, N. L., and Bullen, R. D. (2019). What can echolocation recordings reveal about foraging ecology of Saccolaimus saccolaimus (Emballonuridae) in north-western Australia? Australian Journal of Zoology , .
What can echolocation recordings reveal about foraging ecology of Saccolaimus saccolaimus (Emballonuridae) in north-western Australia?Crossref | GoogleScholarGoogle Scholar |

McKenzie, N. L., and Rolfe, J. K. (1986). Structure of bat guilds in the Kimberley mangroves, Australia. Journal of Animal Ecology 55, 401–420.
Structure of bat guilds in the Kimberley mangroves, Australia.Crossref | GoogleScholarGoogle Scholar |

McKenzie, N. L., Chapman, A., and Youngson, W. K. (1975). Mammals of the Prince Regent River Reserve, north-west Kimberley, W.A. In ‘A Biological Survey of the Prince Regent River Reserve, north-west Kimberley, Western Australia’. (Eds J. M. Miles, and A. A. Burbidge.) Western Australian Wildlife Research Bulletin No. 3, pp. 69–74. (Department of Fisheries and Wildlife: Perth.)

McKenzie, N. L., Fontanini, L., Lindus, N. V., and Williams, M. R. (1995). Biological survey of Koolan Island, Western Australia. 2. Zoological notes. Records of the Western Australian Museum 17, 249–266.

McKenzie, N. L., Start, A. N., and Bullen, R. D. (2002). Foraging ecology and organization of a desert bat fauna. Australian Journal of Zoology 50, 529–548.

McKenzie, N. L., Bullen, R. D., Cowan, M. C., and Milne, D. J. (2018). Echolocation and distribution of Saccolaimus saccolaimus in north-western Australia. Records of the Western Australian Museum 33, 135–144.
Echolocation and distribution of Saccolaimus saccolaimus in north-western Australia.Crossref | GoogleScholarGoogle Scholar |

McNab, B. K. (1980). Food-habits, energetics, and the population biology of mammals. American Naturalist 116, 106–124.
Food-habits, energetics, and the population biology of mammals.Crossref | GoogleScholarGoogle Scholar |

Medellu, C. S., Soemarno, , Marsoedi, , and Berhimpon, S (2012). The influence of opening on the gradient and air temperature edge effects in mangrove forests. International Journal of Basic and Applied Sciences 12, 53–57.

Meyer, C. F. J., Aguiar, L. M. S., Aguirre, L. F., Baumgarten, J., Clarke, F. M., Cosson, J.-F., Villegas, S. E., Fahr, J., Faria, D., Furey, N., Henry, M., Hodgekison, R., Jenkins, R. K. B., Jung, K. G., Kingston, T., Kunz, T. H., Gonzalez, M. C. M., Moya, I., Patterson, B. D., Pons, J.-M., Racey, P. A., Rex, K., Sampaio, E. M., Solari, S., Stoner, K. E., Voight, C. C., von Staden, D., Weise, C. D., and Kalko, E. K. V. (2011). Accounting for detectability improves estimates of species richness in tropical bat surveys. Journal of Applied Ecology 48, 777–787.
Accounting for detectability improves estimates of species richness in tropical bat surveys.Crossref | GoogleScholarGoogle Scholar |

Meynard, C. N., and Quinn, J. F. (2007). Predicting species distributions: a critical comparison of the most common statistical models using artificial species. Journal of Biogeography 34, 1455–1469.
Predicting species distributions: a critical comparison of the most common statistical models using artificial species.Crossref | GoogleScholarGoogle Scholar |

Micallef, L., and Rodgers, P. (2014). eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses. PLoS One 9, e101717.
eulerAPE: drawing area-proportional 3-Venn diagrams using ellipses.Crossref | GoogleScholarGoogle Scholar | 25032825PubMed |

Mills, C. H., and Letnic, M. (2018). Reversing functional extinction of mammals prompts a rethink of paradigms about seed fate in arid Australia. Royal Society Open Science 5, 171977.
Reversing functional extinction of mammals prompts a rethink of paradigms about seed fate in arid Australia.Crossref | GoogleScholarGoogle Scholar | 29410877PubMed |

Milne, D. J., Reardon, T. B., and Watt, F. (2003). New records for Arnhem sheathtail bat Taphozous kapalgensis (Chiroptera: Emballonuridae) from voucher specimens and Anabat recordings. Australian Zoologist 32, 439–445.
New records for Arnhem sheathtail bat Taphozous kapalgensis (Chiroptera: Emballonuridae) from voucher specimens and Anabat recordings.Crossref | GoogleScholarGoogle Scholar |

Milne, D. J., Fisher, A., Rainey, I., and Pavey, C. R. (2005a). Temporal patterns of bats in the Top End of the Northern Territory, Australia. Journal of Mammalogy 86, 909–920.
Temporal patterns of bats in the Top End of the Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Milne, D. J., Armstrong, A., Fisher, A., Flores, T., and Pavey, C. R. (2005b). Structure and environmental relationships of insectivorous bat assemblages in tropical Australian savannas. Austral Ecology 30, 906–919.
Structure and environmental relationships of insectivorous bat assemblages in tropical Australian savannas.Crossref | GoogleScholarGoogle Scholar |

Milne, D. J., Fisher, A., and Pavey, C. R. (2006). Models of the habitat associations and distributions of insectivorous bats of the Top End of the Northern Territory, Australia. Biological Conservation 130, 370–385.
Models of the habitat associations and distributions of insectivorous bats of the Top End of the Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Monadjem, A., Conenna, I., Taylor, P. J., and Schoeman, M. C. (2018). Species richness patterns and functional traits of the bat fauna of arid southern Africa. Hystrix –Italian Journal of Mammalogy 29, 19–24.
Species richness patterns and functional traits of the bat fauna of arid southern Africa.Crossref | GoogleScholarGoogle Scholar |

Monge-Najera, J. (2015). Do biological assemblages and ensembles really exist? Revista de Biología Tropical 63, 575–577.
| 26666115PubMed |

Mouquet, N., and Loreau, M. (2002). Coexistence in metacommunities: the regional similarity hypothesis. American Naturalist 159, 420–426.
Coexistence in metacommunities: the regional similarity hypothesis.Crossref | GoogleScholarGoogle Scholar | 18707425PubMed |

Nijs, I., and Roy, J. (2000). How important are species richness, species evenness and interspecific differences to productivity? A mathematical model. Oikos 88, 57–66.
How important are species richness, species evenness and interspecific differences to productivity? A mathematical model.Crossref | GoogleScholarGoogle Scholar |

Oksanen, L. (2001). Logic of experiments in ecology: is pseudoreplication a pseudoissue? Oikos 94, 27–38.
Logic of experiments in ecology: is pseudoreplication a pseudoissue?Crossref | GoogleScholarGoogle Scholar |

OZCAM (2011). Online zoological collections of Australian museums. Available at: http://www.biomaps.net.au/ozcam2

Pepper, M., and Keogh, J. S. (2014). Biogeography of the Kimberley, Western Australia: a review of landscape evolution and biotic response in an ancient refugium. Journal of Biogeography 41, 1443–1455.
Biogeography of the Kimberley, Western Australia: a review of landscape evolution and biotic response in an ancient refugium.Crossref | GoogleScholarGoogle Scholar |

Pettorelli, N., Barlow, J., Stephens, P. A., Durant, S. M., Connor, B., Schulte to Bühne, H, Sandom, C. J., Wentworth, J., and du Toit, J. T. (2018). Making rewilding fit for policy. Journal of Applied Ecology 55, 1114–1125.
Making rewilding fit for policy.Crossref | GoogleScholarGoogle Scholar |

Prosser, C. L., and Brown, F. (1961). ‘Comparative Animal Physiology.’ (W.B. Saunders: Philadelphia, PA.)

Reardon, T. B., McKenzie, N. L., Cooper, S. J. B., Appleton, B., Carthew, S., and Adams, M. (2014). A molecular and morphological investigation of species boundaries and phylogenetic relationships in Australian free-tailed bats Mormopterus (Chiroptera: Molossidae). Australian Journal of Zoology 62, 109–136.
A molecular and morphological investigation of species boundaries and phylogenetic relationships in Australian free-tailed bats Mormopterus (Chiroptera: Molossidae).Crossref | GoogleScholarGoogle Scholar |

Richards, G. C. (2001). Towards defining adequate bat survey methodology: why electronic call detection is essential throughout the night. Bat Society Newsletter 16, 24–28.

Rodríguez-Gironés, M. A., and Santamaría, L. (2006). A new algorithm to calculate the nestedness temperature of presence–absence matrices. Journal of Biogeography 33, 924–935.
A new algorithm to calculate the nestedness temperature of presence–absence matrices.Crossref | GoogleScholarGoogle Scholar |

Rog, S. M., Clarke, R. H., and Cook, C. N. (2017). More than marine: revealing the critical importance of mangrove ecosystems for terrestrial vertebrates. Diversity & Distributions 23, 221–230.
More than marine: revealing the critical importance of mangrove ecosystems for terrestrial vertebrates.Crossref | GoogleScholarGoogle Scholar |

Rosindell, J., Hubbell, S. P., He, F., Harmon, L. J., and Etienne, R. S. (2012). The case for ecological neutral theory. Trends in Ecology & Evolution 27, 203–208.
The case for ecological neutral theory.Crossref | GoogleScholarGoogle Scholar |

Safi, K., Cianciaruso, M. V., Loyola, R. D., Brito, D., Armour-Marshall, K., and Diniz-Filho, J. A. F. (2011). Understanding global patterns of mammalian functional and phylogenetic diversity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 2536–2544.
Understanding global patterns of mammalian functional and phylogenetic diversity.Crossref | GoogleScholarGoogle Scholar | 21807734PubMed |

Salvarina, J. (2016). Bats and aquatic habitats: a review of habitat use and anthropogenic impacts. Mammal Review , .
Bats and aquatic habitats: a review of habitat use and anthropogenic impacts.Crossref | GoogleScholarGoogle Scholar |

Schnitzler, H. U., and Kalko, E. K. V. (1998). How echolocating bats search and find food. In ‘Bat Biology and Conservation’. (Eds T. H. Kunz, and P. A. Racey.) pp. 183–196. (Smithsonian Institution Press: Washington, DC.)

Shine, R. (2010). The ecological impact of invasive cane toads (Bufo marinus) in Australia. The Quarterly Review of Biology 85, 253–291.
The ecological impact of invasive cane toads (Bufo marinus) in Australia.Crossref | GoogleScholarGoogle Scholar | 20919631PubMed |

Sneath, P. H. A., and Sokal, R. R. (1973). ‘Numerical Taxonomy. The Principles and Practice of Numerical Classification.’ (W.H. Freeman: San Francisco, CA.)

Spicer, J. I., and Gaston, K. (1999). ‘Physiological Diversity and its Ecological Implications.’ (Blackwell Science: Oxford.)

Start, A. N., Burbidge, A. A., McDowell, M. C., and McKenzie, N. L. (2012). The status of non-volant mammals along a rainfall gradient in the south-west Kimberley, Western Australia. Australian Mammalogy 34, 36–48.
The status of non-volant mammals along a rainfall gradient in the south-west Kimberley, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O’Brien, J., and Murphy, W. J. (2005). The molecular phylogeny of bats illuminates biogeography and the fossil record. Science 307, 580–584.
The molecular phylogeny of bats illuminates biogeography and the fossil record.Crossref | GoogleScholarGoogle Scholar | 15681385PubMed |

Thomas, D. W. (1988). The distribution of bats in different ages of Douglas-fir forests. Journal of Wildlife Management 52, 619–626.
The distribution of bats in different ages of Douglas-fir forests.Crossref | GoogleScholarGoogle Scholar |

Urban, M. C. (2004). Disturbance heterogeneity determines freshwater metacommunity structure. Ecology 85, 2971–2978.
Disturbance heterogeneity determines freshwater metacommunity structure.Crossref | GoogleScholarGoogle Scholar |

Van Dyck, S., and Strahan, R. (Eds) (2008). ‘The Mammals of Australia.’ (Reed New Holland: Sydney.)

Williams, A. J., and Dickman, C. R. (2004). The ecology of insectivorous bats in the Simpson Desert, central Australia: habitat use. Australian Mammalogy 26, 205–214.
The ecology of insectivorous bats in the Simpson Desert, central Australia: habitat use.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z. (1992). Biogeography and conservation of reptiles, mammals and birds across north-western Australia: an inventory and base for planning an ecological reserve system. Wildlife Research 19, 665–705.

Woinarski, J. C. Z., Menkhorst, K., Gambold, N., and Braithwaite, R. W. (1992). A survey of the wildlife and vegetation of Purnululu (Bungle Bungle) National Park and adjacent area. Department of Conservation and Land Management, Como, Australia.

Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2014). ‘The Action Plan for Australian Mammals 2012.’ (CSIRO Publishing: Australia.)

Young, R. A., and Ford, G. I. (2000). Bat fauna of a semi-arid environment in central western Queensland, Australia. Wildlife Research 27, 203–215.
Bat fauna of a semi-arid environment in central western Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |