Trophic traits of Grammostola vachoni, a tarantula (Araneae : Theraphosidae) from Argentina
Leonela Schwerdt A E , Gabriel Pompozzi B , Ana Elena de Villalobos C and Fernando Pérez-Miles DA Centro de Recursos Renovables de la Zona Semiárida – CONICET, Bahía Blanca 8000, Argentina.
B Instituto de Ciencias Biológicas y Biomédicas del Sur – CONICET, Bahía Blanca 8000, Argentina.
C Centro de Recursos Renovables de la Zona Semiárida – CONICET, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, Bahía Blanca 8000, Argentina.
D Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay.
E Corresponding author. Email: lschwerdt@cerzos-conicet.gob.ar
Australian Journal of Zoology 66(3) 228-234 https://doi.org/10.1071/ZO18034
Submitted: 14 May 2018 Accepted: 31 December 2018 Published: 1 February 2019
Abstract
This is the first study about trophic traits of Grammostola vachoni, a threatened theraphosid spider endemic to the mountain systems of central Argentina. Four prey types were used in experiments: crickets, cockroaches, beetle larvae and adult beetles. Grammostola vachoni was observed to eat at a rate of about once every 11 days, with the mean total number of prey consumed per spider during the experimental period being 2.7. Latency to the first attack was similar for crickets, cockroaches and beetle larvae, but was shorter for adult beetles. Feeding time was significantly longer for crickets and beetle larvae. Mass gain was significantly different among prey types. Feeding effectiveness and ingestion rate were significantly higher for crickets. A significant positive correlation for feeding effectiveness and ingestion rate with prey mass and the initial spider mass was also found.
Additional keywords: feeding effectiveness, feeding frequency, ingestion rate, spider.
References
Anderson, J. F. (1970). Metabolic rates of spiders. Comparative Biochemistry and Physiology 33, 51–72.| Metabolic rates of spiders.Crossref | GoogleScholarGoogle Scholar | 5440935PubMed |
Bilenca, D., and Miñaro, F. (2004). Identificación de Áreas Valiosas Pastizal (AVPs) en las Pampas y campos de Argentina, Uruguay y sur de Brasil. No. 504.73(8) Fundación Vida Silvestre Argentina, Buenos Aires.
Canals, M., Salazar, M. J., Durán, C., Figueroa, D., and Veloso, C. (2007). Respiratory refinements in the mygalomorph spider Grammostola rosea Walckenaer 1837 (Araneae, Theraphosidae). The Journal of Arachnology 35, 481–486.
| Respiratory refinements in the mygalomorph spider Grammostola rosea Walckenaer 1837 (Araneae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar |
Canals, M., Figueroa, D., Alfaro, C., Kawamoto, T., Torres-Contreras, H., Sabat, P., and Veloso, C. (2011). Effects of diet and water supply on energy intake and water loss in a mygalomorph spider in a fluctuating environment of the central Andes. Journal of Insect Physiology 57, 1489–1494.
| Effects of diet and water supply on energy intake and water loss in a mygalomorph spider in a fluctuating environment of the central Andes.Crossref | GoogleScholarGoogle Scholar | 21821038PubMed |
Cheli, G., Armendano, A., and Gonzalez, A. (2006). Preferencia alimentaria de arañas Misumenops pallidus (Araneae: Thomisidae) sobre potenciales insectos presa de cultivos de alfalfa. Revista de Biología Tropical 54, 505–513.
| Preferencia alimentaria de arañas Misumenops pallidus (Araneae: Thomisidae) sobre potenciales insectos presa de cultivos de alfalfa.Crossref | GoogleScholarGoogle Scholar | 18494318PubMed |
Coddington, J. A., and Levi, H. W. (1991). Systematics and evolution of spiders (Araneae). Annual Review of Ecology and Systematics 22, 565–592.
| Systematics and evolution of spiders (Araneae).Crossref | GoogleScholarGoogle Scholar |
Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., and Robledo, C. W. (2016). InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available at: http://www.infostat.com.ar (accessed April 2018)
Eberhard, W. G., Barrantes, G., and Weng, J. (2006). Tie them up tight: wrapping by Philoponella vicina spiders breaks, compresses and sometimes kills their prey. Naturwissenschaften 93, 251–254.
| Tie them up tight: wrapping by Philoponella vicina spiders breaks, compresses and sometimes kills their prey.Crossref | GoogleScholarGoogle Scholar | 16544123PubMed |
Ferretti, N., Pompozzi, G., Copperti, S., Perez-Miles, F., and Gonzales, A. (2012). Mygalomorpha spider community of a natural reserve in a hilly system in central Argentina. Journal of Insect Science 12, 1–16.
Ferretti, N., and Ferrero, A. (2008). Courtship and mating behavior of Grammostola schulzei (Schmidt 1994) a burrowing tarantula from Argentina. The Journal of Arachnology 36, 480–483.
| Courtship and mating behavior of Grammostola schulzei (Schmidt 1994) a burrowing tarantula from Argentina.Crossref | GoogleScholarGoogle Scholar |
Ferretti, N., and Pérez-Miles, F (2011). Intraspecific non-sexual interactions of Grammostola schulzei (Araneae, Theraphosidae) under laboratory conditions. Revista de Biología Tropical 59, 1173–1182.
| 22017123PubMed |
Ferretti, N. E., and Pompozzi, G. (2012). Grammostola vachoni. In ‘IUCN 2012: IUCN Red List of Threatened Species. Version 2012.3’. Available at: www.iucnredlist.org (accessed April 2018)
García, F., Lacava, M., and Viera, C. (2014). Diet composition and prey selectivity by the spider Oecobius concinnus (Araneae: Oecobiidae) from Colombia. The Journal of Arachnology 42, 199–201.
| Diet composition and prey selectivity by the spider Oecobius concinnus (Araneae: Oecobiidae) from Colombia.Crossref | GoogleScholarGoogle Scholar |
García, L. F., Gonzalez-Gomez, J. C., Valenzuela-Rojas, J. C., Tizo-Pedrozo, E., and Lacava, M. (2016). Diet composition and prey selectivity of Colombian populations of a social pseudoscorpion. Insectes Sociaux 63, 635–640.
| Diet composition and prey selectivity of Colombian populations of a social pseudoscorpion.Crossref | GoogleScholarGoogle Scholar |
Greenstone, M. H., and Bennett, A. F. (1980). Foraging strategy and metabolic rate in spiders. Ecology 61, 1255–1259.
| Foraging strategy and metabolic rate in spiders.Crossref | GoogleScholarGoogle Scholar |
Jackson, A. C., Rundle, S. D., Attrill, M. J., and Cotton, P. A. (2004). Ontogenetic changes in metabolism may determine diet shifts for a sit and wait predator. Journal of Animal Ecology 73, 536–545.
| Ontogenetic changes in metabolism may determine diet shifts for a sit and wait predator.Crossref | GoogleScholarGoogle Scholar |
Jensen, K., Mayntz, D., Wang, T., Simpson, S., and Overgaard, J. (2010). Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. Journal of Insect Physiology 56, 1095–1100.
| Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga.Crossref | GoogleScholarGoogle Scholar | 20227417PubMed |
Kaltsas, D., Stathi, I., and Mylonas, M. (2008). The foraging activity of Mesobuthus gibbosus (Scorpiones: Buthidae) in central and south Aegean archipelago. Journal of Natural History 42, 513–527.
| The foraging activity of Mesobuthus gibbosus (Scorpiones: Buthidae) in central and south Aegean archipelago.Crossref | GoogleScholarGoogle Scholar |
Kosiba, S., Allen, P., and Barrantes, G. (2012). Feeding effectiveness of Megaphobema mesomelas (Araneae, Theraphosidae) on two prey types. Arachnology 15, 228–230.
| Feeding effectiveness of Megaphobema mesomelas (Araneae, Theraphosidae) on two prey types.Crossref | GoogleScholarGoogle Scholar |
Lichtenstein, J., Rice, H., and Pruitt, J. (2018). Personality variation in two predator species does not impact prey species survival or plant damage in staged mesocosms. Behavioral Ecology and Sociobiology 72, 70.
| Personality variation in two predator species does not impact prey species survival or plant damage in staged mesocosms.Crossref | GoogleScholarGoogle Scholar |
Litsios, G., Pellissier, L. C., Forest, F., Lexer, C., Pearman, P. B., Zimmermann, N. E., and Salamin, N. (2012). Trophic specialization influences the rate of environmental niche evolution in damselfishes (Pomacentridae). Proceedings of the Royal Society of London B: Biological Sciences 279, 3662–3669.
| Trophic specialization influences the rate of environmental niche evolution in damselfishes (Pomacentridae).Crossref | GoogleScholarGoogle Scholar |
Líznarová, E., and Pekár, E. (2015). Trophic niche of Oecobius maculatus (Araneae: Oecobiidae): evidence based on natural diet, prey capture success, and prey handling. The Journal of Arachnology 43, 188–193.
| Trophic niche of Oecobius maculatus (Araneae: Oecobiidae): evidence based on natural diet, prey capture success, and prey handling.Crossref | GoogleScholarGoogle Scholar |
Locht, A., Yánez, M., and Vazquez, I. (1999). Distribution and natural history of Mexican species of Brachypelma and Brachypelmides (Theraphosidae, Theraphosinae) with morphological evidence for their synonymy. The Journal of Arachnology 27, 196–200.
McCue, M. D. (2006). Specific dynamic action: a century of investigation. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 144, 381–394.
| Specific dynamic action: a century of investigation.Crossref | GoogleScholarGoogle Scholar |
Michálek, O., Petráková, L., and Pekár, S. (2017). Capture efficiency and trophic adaptations of a specialist and generalist predator: a comparison. Ecology and Evolution 7, 2756–2766.
| Capture efficiency and trophic adaptations of a specialist and generalist predator: a comparison.Crossref | GoogleScholarGoogle Scholar | 28428866PubMed |
Miyashita, T. (1992). Variability in food consumption rate of natural populations in the spider, Nephila clavata. Population Ecology 34, 15–28.
| Variability in food consumption rate of natural populations in the spider, Nephila clavata.Crossref | GoogleScholarGoogle Scholar |
Morse, D. M. (2007). ‘Predator Upon a Flower: Life History and Fitness in a Crab Spider.’ (Harvard University Press.)
Nentwig, W. (2013). ‘Ecophysiology of Spiders.’ (Springer-Verlag: Berlin.)
Pekár, S., and Toft, S. (2015). Trophic specialization in a predatory group: the case of prey specialised spiders (Araneae). Biological Reviews of the Cambridge Philosophical Society 90, 744–761.
| Trophic specialization in a predatory group: the case of prey specialised spiders (Araneae).Crossref | GoogleScholarGoogle Scholar | 25099505PubMed |
Pekár, S., Coddington, J. A., and Blackedge, T. (2012). Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets. Evolution 66, 776–806.
| Evolution of stenophagy in spiders (Araneae): evidence based on the comparative analysis of spider diets.Crossref | GoogleScholarGoogle Scholar | 22380440PubMed |
Pérez-Miles, F., Costa, F. G., Toscano-Gadea, C., and Miganone, A. (2005). Ecology and behaviour of the ‘road tarantulas’ Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Theraphosidae) from Uruguay. Journal of Natural History 39, 483–498.
| Ecology and behaviour of the ‘road tarantulas’ Eupalaestrus weijenberghi and Acanthoscurria suina (Araneae, Theraphosidae) from Uruguay.Crossref | GoogleScholarGoogle Scholar |
Persons, M. H. (1999). Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae). Animal Behaviour 57, 81–88.
| Hunger effects on foraging responses to perceptual cues in immature and adult wolf spiders (Lycosidae).Crossref | GoogleScholarGoogle Scholar | 10053074PubMed |
Petrakova, L., Michalko, R., Loverre, P., Sentenská, L., Korenko, S., and Pékar, S. (2015). Intraguild predation among spiders and their effect on the pear Psylla during winter. Agriculture, Ecosystems & Environment 233, 67–74.
| Intraguild predation among spiders and their effect on the pear Psylla during winter.Crossref | GoogleScholarGoogle Scholar |
Philip, B. N., and Shillington, C. (2010). The effect of prey availability on metabolism and activity in the tarantula Phormictopus cancerides. Canadian Journal of Zoology 88, 90–98.
| The effect of prey availability on metabolism and activity in the tarantula Phormictopus cancerides.Crossref | GoogleScholarGoogle Scholar |
Punzo, F. (2002). Food imprinting and subsequent prey preference in the lynx spider, Oxyopes salticus (Araneae: Oxyopidae). Behavioural Processes 58, 177–181.
| Food imprinting and subsequent prey preference in the lynx spider, Oxyopes salticus (Araneae: Oxyopidae).Crossref | GoogleScholarGoogle Scholar | 12044694PubMed |
Pyke, G. H., Pulliam, H. R., and Charnov, E. L. (1977). Optimal foraging: a selective review of theory and tests. The Quarterly Review of Biology 52, 137–154.
| Optimal foraging: a selective review of theory and tests.Crossref | GoogleScholarGoogle Scholar |
Schmidt, J. M., Sebastian, P., Wilder, S. M., and Rypstra, A. L. (2012a). The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS One 7, e49223.
| The nutritional content of prey affects the foraging of a generalist arthropod predator.Crossref | GoogleScholarGoogle Scholar | 23145130PubMed |
Schmidt, J. M., Harwood, J. D., and Rypstra, A. L. (2012b). Foraging activity of a dominant epigeal predator: molecular evidence for the effect of prey density on consumption. Oikos 121, 1715–1724.
| Foraging activity of a dominant epigeal predator: molecular evidence for the effect of prey density on consumption.Crossref | GoogleScholarGoogle Scholar |
Schwerdt, L., Villalobos, A. E., and Pérez-Miles, F. (2018). Spiders as potential bioindicators of mountain grasslands health: the Argentine tarantula Grammostola vachoni (Araneae, Theraphosidae). Wildlife Research 45, 64–71.
| Spiders as potential bioindicators of mountain grasslands health: the Argentine tarantula Grammostola vachoni (Araneae, Theraphosidae).Crossref | GoogleScholarGoogle Scholar |
Stradling, D. J. (1994). Distribution and behavioral ecology of an arboreal ‘tarantula’ spider in Trinidad. Biotropica 26, 84–97.
| Distribution and behavioral ecology of an arboreal ‘tarantula’ spider in Trinidad.Crossref | GoogleScholarGoogle Scholar |
Weng, J. L., Barrantes, G., and Eberhard, W. G. (2006). Feeding by Philoponella vicina (Araneae, Uloboridae) and how uloborids lost their venom glands. Canadian Journal of Zoology 84, 1752–1762.
| Feeding by Philoponella vicina (Araneae, Uloboridae) and how uloborids lost their venom glands.Crossref | GoogleScholarGoogle Scholar |
Yañez, M., and Floater, G. (2000). Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klaasi (Araneae: Theraphosidae) in Mexico. Biodiversity and Conservation 9, 795–810.
| Spatial distribution and habitat preference of the endangered tarantula, Brachypelma klaasi (Araneae: Theraphosidae) in Mexico.Crossref | GoogleScholarGoogle Scholar |
Zar, J. H. (1999). ‘Biostatistical Analysis.’ (Pearson Education: India.)