Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Two new mitogenomes of Pellorneidae (Aves : Passeriformes) and a phylogeny of the superfamily Sylvioidea

Zuhao Huang https://orcid.org/0000-0003-1450-0850 A C , Feiyun Tu B and Shan Tang B
+ Author Affiliations
- Author Affiliations

A School of Life Sciences, Jinggangshan University, Ji’an, 343009, Jiangxi Province, China.

B Jiangxi Academy of Forestry, Nanchang, 330013, Jiangxi Province, China.

C Corresponding author. Email: hzhow@163.com

Australian Journal of Zoology 66(3) 167-173 https://doi.org/10.1071/ZO18025
Submitted: 13 April 2018  Accepted: 11 October 2018   Published: 16 November 2018

Abstract

The superfamily Sylvioidea contains the most diversified species within the Passerida. The grey-cheeked fulvetta (Alcippe morrisonia) and the eyebrowed wren-babbler (Napothera epilepidota) are birds with a weak flight that live in lightly wooded or scrubland environments. In the present study, two new mitogenomes of A. morrisonia (KX376475) and N. epilepidota (KX831093) within the superfamily Sylvioidea were sequenced and their total lengths were 17 788 bp and 17 913 bp, respectively. Both mitogenomes comprised 13 protein-coding genes, 22 tRNAs, 2 rRNAs and two control regions (CR and CCR). Similar to most metazoans, both mitogenomes and their protein-coding genes encoded on the H-strand displayed typical positive AT skews and negative GC skews. Bayesian inference and maximum-likelihood phylogenetic analyses were conducted on the basis of partitioned data of mitogenomes and two identical topologies were observed. The family-level phylogenetic relationships ((((Pellorneidae, Leiothrichidae) Timaliidae) Zosteropidae) Sylviidae) among the superfamily Sylvioidea were strongly supported. Within the family Pellorneidae, A. morrisonia clustered with N. epilepidota. Within Leiothrichidae, we further demonstrated that Babax lanceolatus is sister to Garrulax perspicillatus, and Spizixos semitorques was nested within the genus Pycnonotus according to the mitogenomic data and we propose that the generic placement of Spizixos should be reconsidered.

Additional keywords: Alcippe morrisonia, Napothera epilepidota.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Alström, P., Ericson, P., Olsson, U., and Sundberg, P. (2006). Phylogeny and classification of the avian superfamily Sylvioidea. Molecular Phylogenetics and Evolution 38, 381–397.
Phylogeny and classification of the avian superfamily Sylvioidea.Crossref | GoogleScholarGoogle Scholar |

Alström, P., Olsson, U., and Lei, F. M. (2013). A review of the recent advances in the systematics of the avian superfamily Sylvioidea. Chinese Birds 4, 99–131.
A review of the recent advances in the systematics of the avian superfamily Sylvioidea.Crossref | GoogleScholarGoogle Scholar |

Castellana, S., Vicario, S., and Saccone, C. (2011). Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes. Genome Biology and Evolution 3, 1067–1079.
Evolutionary patterns of the mitochondrial genome in Metazoa: exploring the role of mutation and selection in mitochondrial protein coding genes.Crossref | GoogleScholarGoogle Scholar |

Cibois, A. (2003). Mitochondrial DNA phylogeny of babblers (Timaliidae). The Auk 120, 35–54.
Mitochondrial DNA phylogeny of babblers (Timaliidae).Crossref | GoogleScholarGoogle Scholar |

Dejtaradol, A., Renner, S. C., Karapan, S., Bates, P. J. J., Moyle, R. G., and Päckert, M. (2016). Indochinese-Sundaic faunal transition and phylogeographical divides north of the Isthmus of Kra in Southeast Asian bulbuls (Aves: Pycnonotidae). Journal of Biogeography 43, 471–483.
Indochinese-Sundaic faunal transition and phylogeographical divides north of the Isthmus of Kra in Southeast Asian bulbuls (Aves: Pycnonotidae).Crossref | GoogleScholarGoogle Scholar |

Dickinson, E. C. (2003). ‘The Howard and Moore Complete Checklist of the Birds of the World.’ (Christopher Helm: London.)

Ericson, P. G. P., and Johansson, U. S. (2003). Phylogeny of Passerida (Aves: Passeriformes) based on nuclear and mitochondrial sequence data. Molecular Phylogenetics and Evolution 29, 126–138.
Phylogeny of Passerida (Aves: Passeriformes) based on nuclear and mitochondrial sequence data.Crossref | GoogleScholarGoogle Scholar |

Fregin, S., Haase, M., Olsson, U., and Alström, P. (2012). New insights into family relationships within the avian superfamily Sylvioidea (Passeriformes) based on seven molecular markers. BMC Evolutionary Biology 12, 157.
New insights into family relationships within the avian superfamily Sylvioidea (Passeriformes) based on seven molecular markers.Crossref | GoogleScholarGoogle Scholar |

Gelang, M., Cibois, A., Pasquet, E., Olsson, U., Alström, P., and Ericson, P. G. P. (2009). Phylogeny of babblers (Aves, Passeriformes): major lineages, family limits and classification. Zoologica Scripta 38, 225–236.
Phylogeny of babblers (Aves, Passeriformes): major lineages, family limits and classification.Crossref | GoogleScholarGoogle Scholar |

Gill, F., and Donsker, D. (2013). IOC World Bird List (version 3.3). Available at: www.worldbirdnames.org [accessed 5 March 2013].

Huang, R., Zhou, Y. Y., Yao, Y. F., Zhao, B., Zhang, Y. L., and Xu, H. L. (2016). Complete mitochondrial genome and phylogenetic relationship analysis of Garrulax affinis (Passeriformes, Timaliidae). Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis 27, 3502–3503.
Complete mitochondrial genome and phylogenetic relationship analysis of Garrulax affinis (Passeriformes, Timaliidae).Crossref | GoogleScholarGoogle Scholar |

Huang, Z. H., and Ke, D. H. (2015). DNA barcoding and phylogenetic relationships in Timaliidae. Genetics and Molecular Research 14, 5943–5949.
DNA barcoding and phylogenetic relationships in Timaliidae.Crossref | GoogleScholarGoogle Scholar |

Huang, Z. H., Tu, F. Y., and Murphy, R. W. (2016). Analysis of the complete mitogenome of Oriental turtle dove (Streptopelia orientalis) and implications for species divergence. Biochemical Systematics and Ecology 65, 209–213.
Analysis of the complete mitogenome of Oriental turtle dove (Streptopelia orientalis) and implications for species divergence.Crossref | GoogleScholarGoogle Scholar |

Huang, Z. H., Tu, F. Y., and Ke, D. H. (2017). Complete mitochondrial genome of blue-throated bee-eater Merops viridis (Coraciiformes: Meropidae) with its taxonomic consideration. Pakistan Journal of Zoology 49, 79–84.
Complete mitochondrial genome of blue-throated bee-eater Merops viridis (Coraciiformes: Meropidae) with its taxonomic consideration.Crossref | GoogleScholarGoogle Scholar |

Huelsenbeck, J., and Rannala, B. (2004). Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology 53, 904–913.
Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models.Crossref | GoogleScholarGoogle Scholar |

IUCN (2016). The IUCN Red List of Threatened Species. Version 2016-3. Available at: www.iucnredlist.org [accessed 1 October 2016].

Kumazawa, Y. (2007). Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. Gene 388, 19–26.
Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations.Crossref | GoogleScholarGoogle Scholar |

Kumazawa, Y., and Nishida, M. (1993). Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics. Journal of Molecular Evolution 37, 380–398.
Sequence evolution of mitochondrial tRNA genes and deep-branch animal phylogenetics.Crossref | GoogleScholarGoogle Scholar |

Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar |

Lowe, T. M., and Eddy, S. R. (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25, 955–964.

Luo, X., Qu, Y. H., Han, L. X., Li, S. H., and Lei, F. M. (2009). A phylogenetic analysis of laughingthrushes (Timaliidae: Garrulax) and allies based on mitochondrial and nuclear DNA sequences. Zoologica Scripta 38, 9–22.
A phylogenetic analysis of laughingthrushes (Timaliidae: Garrulax) and allies based on mitochondrial and nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Luo, A., Qiao, H. J., Zhang, Y. Z., Shi, W. F., Ho, S. Y. W., Xu, W. J., Zhang, A. B., and Zhu, C. D. (2010). Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets. BMC Evolutionary Biology 10, 242.
Performance of criteria for selecting evolutionary models in phylogenetics: a comprehensive study based on simulated datasets.Crossref | GoogleScholarGoogle Scholar |

MacKinnon, J., Phillipps, K., and He, F. Q. (2000). ‘A Field Guide to the Birds of China.’ (Oxford University Press: New York.)

Min, X. J., and Hickey, D. A. (2007). DNA asymmetric strand bias affects the amino acid composition of mitochondrial proteins. DNA Research 14, 201–206.
DNA asymmetric strand bias affects the amino acid composition of mitochondrial proteins.Crossref | GoogleScholarGoogle Scholar |

Moyle, R. G., and Marks, B. D. (2006). Phylogenetic relationships of the bulbuls (Aves: Pycnonotidae) based on mitochondrial and nuclear DNA sequence data. Molecular Phylogenetics and Evolution 40, 687–695.
Phylogenetic relationships of the bulbuls (Aves: Pycnonotidae) based on mitochondrial and nuclear DNA sequence data.Crossref | GoogleScholarGoogle Scholar |

Nylander, J. A. A. (2004). ‘MrModeltest V2.’ (Evolutionary Biology Centre, Uppsala University: Uppsala, Sweden.)

Perna, N. T., and Kocher, T. D. (1995). Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes. Journal of Molecular Evolution 41, 353–358.
Patterns of nucleotide composition at fourfold degenerate sites of animal mitochondrial genomes.Crossref | GoogleScholarGoogle Scholar |

Qi, Y., Zhou, Y. Y., Yao, Y. F., Huan, Z. J., Li, D. Y., Xie, M., Ni, Q. Y., Zhang, M. W., and Xu, H. L. (2016). The complete mitochondrial genome of Babax lanceolatus (Passeriformes: Timaliidae). Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis 27, 2925–2926.
The complete mitochondrial genome of Babax lanceolatus (Passeriformes: Timaliidae).Crossref | GoogleScholarGoogle Scholar |

Ren, Q. Q., Qian, C. J., Yuan, J., Li, X. F., Yang, J. K., Wang, P., Jiang, L., Zhang, Q., Wang, Y., and Kan, X. Z. (2016). Complete mitochondrial genome of the black-capped bulbul, Pycnonotus melanicterus (Passeriformes: Pycnonotidae). Mitochondrial DNA. Part A, DNA Mapping, Sequencing, and Analysis 27, 1378–1380.

Ronquist, F. R., and Huelsenbeck, J. P. (2003). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 19, 1572–1574.
MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar |

Sambrook, J., Fristsch, E. F., and Maniatis, T. (1989). ‘Molecular Cloning: A Laboratory Manual.’ (Cold Spring Harbor Laboratory Press: New York.)

Shen, Y. Y., Liang, L., Sun, Y. B., Yue, B. S., Yang, X. J., Murphy, R. W., and Zhang, Y. P. (2010). A mitogenomic perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae. BMC Evolutionary Biology 10, 132.
A mitogenomic perspective on the ancient, rapid radiation in the Galliformes with an emphasis on the Phasianidae.Crossref | GoogleScholarGoogle Scholar |

Sibley, C. G., and Ahlquist, J. E. (1990). ‘Phylogeny and Classification of Birds: a Study in Molecular Evolution.’ (Yale University Press: New Haven, CT.)

Sibley, C. G., and Monroe, B. L., Jr (1990). ‘Distribution and Taxonomy of Birds of the World.’ (Yale University Press: New Haven, CT.)

Song, X. H., Huang, J., Yan, C. C., Xu, G. W., Zhang, X. Y., and Yue, B. S. (2015). The complete mitochondrial genome of Accipiter virgatus and evolutionary history of the pseudo-control regions in Falconiformes. Biochemical Systematics and Ecology 58, 75–84.
The complete mitochondrial genome of Accipiter virgatus and evolutionary history of the pseudo-control regions in Falconiformes.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar |

Stothard, P., and Wishart, D. S. (2005). Circular genome visualization and exploration using CGView. Bioinformatics 21, 537–539.
Circular genome visualization and exploration using CGView.Crossref | GoogleScholarGoogle Scholar |

Sun, S., Kong, L. F., Yu, H., and Li, Q. (2015). Complete mitochondrial genome of Anadara vellicata (Bivalvia: Arcidae): a unique gene order and large atypical non-coding region. Comparative Biochemistry and Physiology. Part D, Genomics & Proteomics 16, 73–82.
Complete mitochondrial genome of Anadara vellicata (Bivalvia: Arcidae): a unique gene order and large atypical non-coding region.Crossref | GoogleScholarGoogle Scholar |

Swindell, S. R., and Plasterer, T. N. (1997). ‘SEQMAN. Sequence Data Analysis Guidebook.’ (Springer.)

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar |

Waddell, P. J., Cao, Y., Hauf, J., and Hasegawa, M. (1999). Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant. Systematic Biology 48, 31–53.
Using novel phylogenetic methods to evaluate mammalian mtDNA, including amino acid-invariant sites-LogDet plus site stripping, to detect internal conflicts in the data, with special reference to the positions of hedgehog, armadillo, and elephant.Crossref | GoogleScholarGoogle Scholar |

Weber, M., Wey-Fabrizius, A. R., Podsiadlowski, L., Witek, A., Schill, R. O., Sugár, L., Herlyn, H., and Hankeln, T. (2013). Phylogenetic analyses of endoparasitic Acanthocephala based on mitogenomes suggest secondary loss of sensory organs. Molecular Phylogenetics and Evolution 66, 182–189.
Phylogenetic analyses of endoparasitic Acanthocephala based on mitogenomes suggest secondary loss of sensory organs.Crossref | GoogleScholarGoogle Scholar |

Xia, X., and Xie, Z. (2001). DAMBE: software package for data analysis in molecular biology and evolution. Journal of Heredity 92, 371–373.
DAMBE: software package for data analysis in molecular biology and evolution.Crossref | GoogleScholarGoogle Scholar |

Yue, H., Yan, C. C., Tu, F. Y., Yang, C. Z., Ma, W. Q., Fan, Z. X., Song, Z. B., Owens, J., Liu, S. Y., and Zhang, X. Y. (2015). Two novel mitogenomes of Dipodidae species and phylogeny of Rodentia inferred from the complete mitogenomes. Biochemical Systematics and Ecology 60, 123–130.
Two novel mitogenomes of Dipodidae species and phylogeny of Rodentia inferred from the complete mitogenomes.Crossref | GoogleScholarGoogle Scholar |

Zheng, G. M. (2011). ‘A Checklist on the Classification and Distribution of the Birds of China.’ (Science Press: Beijing.)

Zuccon, D., and Ericson, P. G. P. (2010). The phylogenetic position of the black-collared bulbul Neolestes torquatus. Ibis 152, 386–392.
The phylogenetic position of the black-collared bulbul Neolestes torquatus.Crossref | GoogleScholarGoogle Scholar |