Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Very low rate of multiple paternity detected in clutches of a wild agamid lizard

Jessica Hacking A D , Devi Stuart-Fox B and Michael Gardner A C
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia.

B School of BioSciences, University of Melbourne, Parkville, Vic. 3010, Australia.

C Evolutionary Biology Unit, South Australian Museum, Adelaide, SA 5000, Australia.

D Corresponding author. Email: jessica.hacking@flinders.edu.au

Australian Journal of Zoology 65(5) 328-334 https://doi.org/10.1071/ZO18006
Submitted: 24 January 2018  Accepted: 5 April 2018   Published: 30 April 2018

Abstract

Genetic mating systems described for squamate reptiles range from primarily monogamous to completely polygynandrous. The presence of female multiple mating is almost ubiquitous among squamates and even occurs, albeit at a low rate, in socially monogamous species. Here we examine the genetic mating system of the territorial tawny dragon lizard (Ctenophorus decresii). Paternity was assigned to captive-born hatchlings using eight microsatellite loci, revealing a 4% rate of multiple paternity. One-quarter of males sired more than one clutch, although multiple mating by males is likely underestimated. The rate of multiple paternity in C. decresii represents one of the lowest among squamates and may be a result of successful male territoriality. However, the observed low rate of multiple paternity does not eliminate the possibility of widespread female multiple mating due to the potential for sperm storage and sperm competition. We conclude that the tawny dragon lizard employs a predominantly polygynous genetic mating system.

Additional keywords: Ctenophorus decresii, genetic mating system, polygyny.


References

Barbosa, M., Connolly, S. R., Hisano, M., Dornelas, M., and Magurran, A. E. (2012). Fitness consequences of female multiple mating: a direct test of indirect benefits. BMC Evolutionary Biology 12, 185.
Fitness consequences of female multiple mating: a direct test of indirect benefits.Crossref | GoogleScholarGoogle Scholar |

Birkhead, T. R., and Møller, A. P. (1998). ‘Sperm Competition and Sexual Selection.’ (Academic Press: New York.)

Bull, C. M., Cooper, S. J. B., and Baghurst, B. C. (1998). Social monogamy and extra-pair fertilization in an Australian lizard, Tiliqua rugosa. Behavioral Ecology and Sociobiology 44, 63–72.
Social monogamy and extra-pair fertilization in an Australian lizard, Tiliqua rugosa.Crossref | GoogleScholarGoogle Scholar |

Chapman, T., Arnqvist, G., Bangham, J., and Rowe, L. (2003). Sexual conflict. Trends in Ecology & Evolution 18, 41–47.
Sexual conflict.Crossref | GoogleScholarGoogle Scholar |

Eizaguirre, C., Laloi, D., Massot, M., Richard, M., Federici, P., and Clobert, J. (2007). Condition dependence of reproductive strategy and the benefits of polyandry in a viviparous lizard. Proceedings of the Royal Society B: Biological Sciences 274, 425–430.
Condition dependence of reproductive strategy and the benefits of polyandry in a viviparous lizard.Crossref | GoogleScholarGoogle Scholar |

Fitzsimmons, N. N. (1998). Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology 7, 575–584.
Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3ps1OmtQ%3D%3D&md5=56ae1caf24dfa218c91544d90bbf1c9bCAS |

Franklin, I. R. (1980). ‘Evolutionary Change in Small Populations.’ (Sinauer: Sunderland, MA.)

Frère, C. H., Chandrasoma, D., and Whiting, M. J. (2015). Polyandry in dragon lizards: inbred paternal genotypes sire fewer offspring. Ecology and Evolution 5, 1686–1692.
Polyandry in dragon lizards: inbred paternal genotypes sire fewer offspring.Crossref | GoogleScholarGoogle Scholar |

Friesen, C. R., Mason, R. T., Arnold, S. J., and Estes, S. (2014). Patterns of sperm use in two populations of red-sided garter snake (Thamnophis sirtalis parietalis) with long-term female sperm storage. Canadian Journal of Zoology 92, 33–40.
Patterns of sperm use in two populations of red-sided garter snake (Thamnophis sirtalis parietalis) with long-term female sperm storage.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Bull, C. M., and Cooper, S. J. B. (2002). High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii. Molecular Ecology 11, 1787–1794.
High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWhtrw%3D&md5=c072cbe270043c62264642848ef1bb81CAS |

Glass, G. E., Klein, S. L., Norris, D. E., and Gardner, L. C. (2016). Multiple paternity in urban Norway rats: extended ranging for mates. Vector Borne and Zoonotic Diseases 16, 342–348.
Multiple paternity in urban Norway rats: extended ranging for mates.Crossref | GoogleScholarGoogle Scholar |

Jensen, M. P., Abreu-Grobois, F. A., Frydenberg, J., and Loeschcke, V. (2006). Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada Olive Ridley sea turtle rookeries. Molecular Ecology 15, 2567–2575.
Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada Olive Ridley sea turtle rookeries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVegt78%3D&md5=c7ccea2010eb595b2d9084345c2bede9CAS |

Jones, O., and Wang, J. (2010). COLONY: a program for parentage and sibship inference from multilocus genotype data. Molecular Ecology Resources 10, 551–555.
COLONY: a program for parentage and sibship inference from multilocus genotype data.Crossref | GoogleScholarGoogle Scholar |

Kalinowski, S., Taper, M., and Marshall, T. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099–1106.
Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.Crossref | GoogleScholarGoogle Scholar |

Keogh, J. S., Umbers, K. D. L., Wilson, E., Stapley, J., and Whiting, M. J. (2013). Influence of alternate reproductive tactics and pre- and postcopulatory sexual selection on paternity and offspring performance in a lizard. Behavioral Ecology and Sociobiology 67, 629–638.
Influence of alternate reproductive tactics and pre- and postcopulatory sexual selection on paternity and offspring performance in a lizard.Crossref | GoogleScholarGoogle Scholar |

Lande, R. (1995). Mutation and conservation. Conservation Biology 9, 782–791.
Mutation and conservation.Crossref | GoogleScholarGoogle Scholar |

Lebas, N. R. (2001). Microsatellite determination of male reproductive success in a natural population of the territorial ornate dragon lizard, Ctenophorus ornatus. Molecular Ecology 10, 193–203.
Microsatellite determination of male reproductive success in a natural population of the territorial ornate dragon lizard, Ctenophorus ornatus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitFOisQ%3D%3D&md5=73953d862e0c07cacb4c2934dbca48c3CAS |

Lukoschek, V., and Avise, J. C. (2011). Genetic monandry in 6 viviparous species of true sea snakes. The Journal of Heredity 102, 347–351.
Genetic monandry in 6 viviparous species of true sea snakes.Crossref | GoogleScholarGoogle Scholar |

Madsen, T., Shine, R., Loman, J., and Hakansson, T. (1992). Why do female adders copulate so frequently? Nature 355, 440–441.
Why do female adders copulate so frequently?Crossref | GoogleScholarGoogle Scholar |

McAlpin, S., Duckett, P., and Stow, A. (2011). Lizards cooperatively tunnel to construct a long-term home for family members. PLoS One 6, e19041.
Lizards cooperatively tunnel to construct a long-term home for family members.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1ejt74%3D&md5=bafc9a94e8f9d9e954a7a8ea21cf0b4eCAS |

McLean, C. A., Moussalli, A., and Stuart-Fox, D. (2010). The predation cost of female resistance. Behavioral Ecology 21, 861–867.
The predation cost of female resistance.Crossref | GoogleScholarGoogle Scholar |

McLean, C. A., Stuart-Fox, D., and Moussalli, A. (2014). Phylogeographic structure, demographic history and morph composition in a colour polymorphic lizard. Journal of Evolutionary Biology 27, 2123–2137.
Phylogeographic structure, demographic history and morph composition in a colour polymorphic lizard.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2M%2Fkt1OltQ%3D%3D&md5=5c50cd32f8d61619cd83f915a43f9a78CAS |

Moore, J. A., Daugherty, C. H., Godfrey, S. S., and Nelson, N. J. (2009). Seasonal monogamy and multiple paternity in a wild population of a territorial reptile (tuatara). Biological Journal of the Linnean Society 98, 161–170.
Seasonal monogamy and multiple paternity in a wild population of a territorial reptile (tuatara).Crossref | GoogleScholarGoogle Scholar |

Natoli, A., Phillips, K. P., Richardson, D. S., and Jabado, R. W. (2017). Low genetic diversity after a bottleneck in a population of a critically endangered migratory marine turtle species. Journal of Experimental Marine Biology and Ecology 491, 9–18.
Low genetic diversity after a bottleneck in a population of a critically endangered migratory marine turtle species.Crossref | GoogleScholarGoogle Scholar |

Noble, D. W. A., Keogh, J. S., and Whiting, M. J. (2013). Multiple mating in a lizard increases fecundity but provides no evidence for genetic benefits. Behavioral Ecology 24, 1128–1137.
Multiple mating in a lizard increases fecundity but provides no evidence for genetic benefits.Crossref | GoogleScholarGoogle Scholar |

Nunney, L. (1993). The influence of mating system and overlapping generations on effective population size. Evolution 47, 1329–1341.
The influence of mating system and overlapping generations on effective population size.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Healey, M., Wapstra, E., Schwartz, T., Lebas, N., and Uller, T. (2007a). Mating system variation and morph fluctuations in a polymorphic lizard. Molecular Ecology 16, 5307–5315.

Olsson, M., Schwartz, T., Uller, T., and Healey, M. (2007b). Sons are made from old stores: sperm storage effects on sex ratio in a lizard. Biology Letters 3, 491–493.
Sons are made from old stores: sperm storage effects on sex ratio in a lizard.Crossref | GoogleScholarGoogle Scholar |

Olsson, M., Schwartz, T., Uller, T., and Healey, M. (2009). Effects of sperm storage and male colour on probability of paternity in a polychromatic lizard. Animal Behaviour 77, 419–424.

Pemberton, J. M., Slate, J., Bancroft, D. R., and Barrett, J. A. (1995). Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Molecular Ecology 4, 249–252.
Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3ltlCkug%3D%3D&md5=8613041a1779cc8e82222d7720abc32eCAS |

Phillips, K. P., Jorgensen, T. H., Jolliffe, K. G., Jolliffe, S.-M., Henwood, J., and Richardson, D. S. (2013). Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle. Molecular Ecology 22, 2301–2312.
Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle.Crossref | GoogleScholarGoogle Scholar |

Rankin, K. J., McLean, C. A., Kemp, D. J., and Stuart-Fox, D. (2016). The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii. BMC Evolutionary Biology 16, 179.
The genetic basis of discrete and quantitative colour variation in the polymorphic lizard, Ctenophorus decresii.Crossref | GoogleScholarGoogle Scholar |

Rousset, F. (2008). Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8, 103–106.
Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux.Crossref | GoogleScholarGoogle Scholar |

Schwartz, T., Warner, D. A., Beheregaray, L. B., and Olsson, M (2007). Microsatellite loci for Australian agamid lizards. Molecular Ecology Notes 7, 528–531.
Microsatellite loci for Australian agamid lizards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntVykur0%3D&md5=f98732c9420c561bdde7ea3601890ee6CAS |

Smith, L., and Burgoyne, L. (2004). Collecting, archiving and processing DNA from wildlife samples using FTA® databasing paper. BMC Ecology 4, 4.
Collecting, archiving and processing DNA from wildlife samples using FTA® databasing paper.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czpvFaksQ%3D%3D&md5=9dd2c6c6cf10ef65e37ac338ea4977fdCAS |

Stow, A. J., and Sunnucks, P. (2004). High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Molecular Ecology 13, 419–430.
High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FitFCrtQ%3D%3D&md5=df12d7281038303769955a3ab287a4bdCAS |

Todd, E. V., Blair, D., Limpus, C. J., Limpus, D. J., and Jerry, D. R. (2012). High incidence of multiple paternity in an Australian snapping turtle (Elseya albagula). Australian Journal of Zoology 60, 412–418.
High incidence of multiple paternity in an Australian snapping turtle (Elseya albagula).Crossref | GoogleScholarGoogle Scholar |

Tolley, K. A., Chauke, L. F., Jackson, J. C., and Feldheim, K. A. (2014). Multiple paternity and sperm storage in the Cape dwarf chameleon (Bradypodion pumilum). African Journal of Herpetology 63, 47–56.
Multiple paternity and sperm storage in the Cape dwarf chameleon (Bradypodion pumilum).Crossref | GoogleScholarGoogle Scholar |

Uller, T., and Olsson, M. (2008). Multiple paternity in reptiles: patterns and processes. Molecular Ecology 17, 2566–2580.
Multiple paternity in reptiles: patterns and processes.Crossref | GoogleScholarGoogle Scholar |

Uller, T., Stuart-Fox, D., and Olsson, M. (2010). Evolution of primary sexual characters in reptiles. In ‘The Evolution of Primary Sexual Characters in Animals’. (Eds J. Leonard, and A. Corodoba-Aguilar.) pp. 425–453. (Oxford University Press: Oxford & New York.)

Uller, T., Schwartz, T., Koglin, T., and Olsson, M. (2013). Sperm storage and sperm competition across ovarian cycles in the dragon lizard, Ctenophorus fordi. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 319, 404–408.
Sperm storage and sperm competition across ovarian cycles in the dragon lizard, Ctenophorus fordi.Crossref | GoogleScholarGoogle Scholar |

van Schaik, J., and Kerth, G. (2017). Host social organization and mating system shape parasite transmission opportunities in three European bat species. Parasitology Research 116, 589–599.
Host social organization and mating system shape parasite transmission opportunities in three European bat species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2snnsFSgtA%3D%3D&md5=8c290c1e3e8f083a6b29581d4cf6c0e4CAS |

Wang, J. (2004). Sibship reconstruction from genetic data with typing errors. Genetics 166, 1963–1979.
Sibship reconstruction from genetic data with typing errors.Crossref | GoogleScholarGoogle Scholar |

Wang, J. (2007). Triadic IBD coefficients and applications to estimating pairwise relatedness. Genetical Research 89, 135–153.
Triadic IBD coefficients and applications to estimating pairwise relatedness.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyjtrnE&md5=f83302146f49c9f90388e47084d16f32CAS |

Wang, J. (2017). ‘User’s Guide for Software Colony.’ 2.0.6.4 edn. (Zoological Society of London: London.)

White, J., Richard, M., Massot, M., and Meylan, S. (2011). Cloacal bacterial diversity increases with multiple mates: evidence of sexual transmission in female common lizards. PLoS One 6, e22339.
Cloacal bacterial diversity increases with multiple mates: evidence of sexual transmission in female common lizards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGhtL7M&md5=abd8edbd2961544f1467564eaafc33cbCAS |

Whitlock, M. C., and Bürger, R. (2004). ‘Fixation of New Mutations in Small Populations.’ (Cambridge University Press: Cambridge.)

Wusterbarth, T. L., King, R. B., Duvall, M. R., Grayburn, S., and Burghardt, G. M. (2010). Phylogenetically widespread multiple paternity in New World natricine snakes. Herpetological Conservation and Biology 5, 86–93.

Yewers, M. S. C. (2016). The function and evolution of colour polymorphism in the tawny dragon lizard. Ph.D. Thesis, The University of Melbourne.

York, J. R., and Baird, T. A. (2015). Testing the adaptive significance of sex-specific mating tactics in collared lizards (Crotaphytus collaris). Biological Journal of the Linnean Society 115, 423–436.
Testing the adaptive significance of sex-specific mating tactics in collared lizards (Crotaphytus collaris).Crossref | GoogleScholarGoogle Scholar |