Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Weak genetic structuring suggests historically high genetic connectivity among recently fragmented urban populations of the scincid lizard, Ctenotus fallens

Evelyn Virens A , Siegfried L. Krauss B , Robert A. Davis A D and Peter B. S. Spencer C
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia.

B Botanic Gardens and Parks Authority, Fraser Avenue, West Perth, WA 6005, Australia, and School of Plant Biology, University of Western Australia, Crawley, WA 6005, Australia.

C School of Veterinary and Life Sciences, Murdoch University, Perth, WA 6150, Australia.

D Corresponding author. Email: robert.davis@ecu.edu.au

Australian Journal of Zoology 63(4) 279-286 https://doi.org/10.1071/ZO15022
Submitted: 8 May 2015  Accepted: 22 September 2015   Published: 15 October 2015

Abstract

Populations in fragmented urban remnants may be at risk of genetic erosion as a result of reduced gene flow and elevated levels of inbreeding. This may have serious genetic implications for the long-term viability of remnant populations, in addition to the more immediate pressures caused by urbanisation. The population genetic structure of the generalist skink Ctenotus fallens was examined using nine microsatellite markers within and among natural vegetation remnants within a highly fragmented urban matrix in the Perth metropolitan area in Western Australia. These data were compared with samples from a large unfragmented site on the edge of the urban area. Overall, estimates of genetic diversity and inbreeding within all populations were similar and low. Weak genetic differentiation, and a significant association between geographic and genetic distance, suggests historically strong genetic connectivity that decreases with geographic distance. Due to recent fragmentation, and genetic inertia associated with low genetic diversity and large population sizes, it is not possible from these data to infer current genetic connectivity levels. However, the historically high levels of gene flow that our data suggest indicate that a reduction in contemporary connectivity due to fragmentation in C. fallens is likely to result in negative genetic consequences in the longer term.

Additional keywords: conservation genetics, gene flow, habitat fragmentation, microsatellites, urbanisation.


References

Andrews, K. M., Gibbons, J. W., and Jochimsen, D. M. (2008). Ecological effects of roads on amphibians and reptiles. A literature review. In ‘Urban Herpetology’. Herpetological Conservation series Vol. 3. (Eds J. C. Mitchell, R. E. Jung Brown, and B. Bartholomew.) pp. 121–143. (Society for the Study of Amphibians and Reptiles: Salt Lake City, UT.)

Anon (2000). Bush Forever 2.2, Volume 1. Department of Environmental Protection, Perth.

Bamford, M. J., and Calver, M. C. (2012). Cat predation and suburban lizards: a 22 year study at a suburban Australian property. Open Conservation Biology Journal 6, 25–29.
Cat predation and suburban lizards: a 22 year study at a suburban Australian property.Crossref | GoogleScholarGoogle Scholar |

Cincotta, R. P., Wisnewski, J., and Engelman, R. (2000). Human population in the biodiversity hotspots. Nature 404, 990–992.
Human population in the biodiversity hotspots.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtFynsb0%3D&md5=0d189554359bad85959a1067d4604753CAS | 10801126PubMed |

Clark, R. W., Brown, W. S., Stechert, R., and Zamundio, K. R. (2010). Roads, interrupted dispersal and genetic diversity in timber rattlesnakes. Conservation Biology 24, 1059–1069.
Roads, interrupted dispersal and genetic diversity in timber rattlesnakes.Crossref | GoogleScholarGoogle Scholar | 20151984PubMed |

Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6.’ (Primer-E Ltd: Plymouth.)

Czech, B., Krausman, P. R., and Devers, P. K. (2000). Economic associations among causes of species endangerment in the United States: associations among causes of species endangerment in the United States reflect the integration of economic sectors, supporting the theory and evidence that economic growth proceeds at the competitive exclusion of nonhuman species in the aggregate. Bioscience 50, 593–601.
Economic associations among causes of species endangerment in the United States: associations among causes of species endangerment in the United States reflect the integration of economic sectors, supporting the theory and evidence that economic growth proceeds at the competitive exclusion of nonhuman species in the aggregate.Crossref | GoogleScholarGoogle Scholar |

Delany, K. S., Riley, S. P. D., and Fisher, R. N. (2010). A rapid, strong and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS One 5, 1–11.

Earl, D. A., and vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources 4, 359–361.
STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |

Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=d322d4da1e00f2f45dae895611fd8345CAS | 1644282PubMed |

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology Evolution and Systematics 34, 487–515.
Effects of habitat fragmentation on biodiversity.Crossref | GoogleScholarGoogle Scholar |

Field, S. G., Lange, M., Shulenburg, H., Velevan, T. P., and Michiels, N. K. (2007). Genetic diversity and parasite defense in a fragmented urban metapopulation of earthworms. Animal Conservation 10, 162–175.
Genetic diversity and parasite defense in a fragmented urban metapopulation of earthworms.Crossref | GoogleScholarGoogle Scholar |

Harradine, E., How, R. A., Schmitt, L. H., de Hass, C., and Spencer, P. B. S. (2013). Isolation and characterisation of 36 polymorphic microsatellite markers using 454 sequencing in the bar-shouldered skink, Ctenotus inornatus. Conservation Genetics Resources 5, 207–210.
Isolation and characterisation of 36 polymorphic microsatellite markers using 454 sequencing in the bar-shouldered skink, Ctenotus inornatus.Crossref | GoogleScholarGoogle Scholar |

Hoehn, M, Sarre, D. S., and Henle, K (2007). The tail of two geckos: does dispersion prevent extinction in two recently fragmented populations? Molecular Ecology 16, 3299–3312.
| 1:STN:280:DC%2BD2svntVGmsg%3D%3D&md5=583fb7060dc60c1a354f6d15b608fb4aCAS | 17688534PubMed |

Hopper, S. D., and Gioia, P. (2004). The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution and Systematics 35, 623–650.
The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity.Crossref | GoogleScholarGoogle Scholar |

How, R. A. (1998). Long-term sampling of a herpetofaunal assemblage on an isolated urban bushland remnant, Bold Park, Perth. Journal of the Royal Society of Western Australia 81, 143–148.

How, R. A., and Dell, J. (1994). Zoogeographic significance of urban bushland remnants to reptiles. Pacific Conservation Biology 1, 132–140.

How, R. A., and Dell, J. (2000). Ground vertebrate fauna of Perth’s vegetation remnants: impact of 170 years of urbanisation. Pacific Conservation Biology 6, 198–217.

Jellinek, S., Driscoll, D. A., and Kirkpatrick, J. B. (2004). Environmental and vegetation variables have a greater influence than habitat fragmentation in structuring lizard communities in remnant urban bushland. Austral Ecology 29, 294–304.
Environmental and vegetation variables have a greater influence than habitat fragmentation in structuring lizard communities in remnant urban bushland.Crossref | GoogleScholarGoogle Scholar |

Jennings, B. W., and Thompson, G. G. (1999). Territorial behaviour in the Australian scincid lizard Ctenotus fallens. Herpetologica 55, 352–361.

Johansson, H., Surget-Groba, Y., and Thorpe, R. S. (2008). Microsatellite data show evidence for male-biased dispersal in Caribbean lizard Anolis roquet. Molecular Ecology 17, 4425–4432.
Microsatellite data show evidence for male-biased dispersal in Caribbean lizard Anolis roquet.Crossref | GoogleScholarGoogle Scholar | 18803592PubMed |

Jost, L. (2008). GST and its relatives do not measure differentiation. Molecular Ecology 17, 4015–4026.
GST and its relatives do not measure differentiation.Crossref | GoogleScholarGoogle Scholar | 19238703PubMed |

Kay, G. M., and Keogh, J. S. (2012). Molecular phylogeny and morphological revision of the Ctenotus labillardieri (Reptilia: Squamata: Scincidae) species group and a new species of immediate conservation concern in the southwestern Australian biodiversity hotspot. Zootaxa 3390, 1–18.

Koenig, J., Shine, R., and Shea, G. (2002). The dangers of life in the city: patterns of activity, injury and mortality in suburban lizards (Tiliqua scincoides). Journal of Herpetology 36, 62–68.
The dangers of life in the city: patterns of activity, injury and mortality in suburban lizards (Tiliqua scincoides).Crossref | GoogleScholarGoogle Scholar |

MacArthur, R. H., and Wilson, E. O. (1967). ‘The Theory of Island Biogeography.’ (Princeton University Press: Princeton, NJ.)

Magle, S. B., Ruell, E. W., Antolin, M. F., and Crooks, K. R. (2010). Population genetic structure of black-tailed prairie dogs, a highly interactive species in a fragmented urban habitat. Journal of Mammalogy 91, 326–335.
Population genetic structure of black-tailed prairie dogs, a highly interactive species in a fragmented urban habitat.Crossref | GoogleScholarGoogle Scholar |

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research 27, 209–220.
| 1:STN:280:DyaF2s%2FptlSnsA%3D%3D&md5=e597470961ecd03bee314554004756bdCAS | 6018555PubMed |

McGuirk, P., and Argent, N. (2011). Population growth and change: implications for Australia’s cities and regions. Geographical Research 49, 317–335.
Population growth and change: implications for Australia’s cities and regions.Crossref | GoogleScholarGoogle Scholar |

McKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation 127, 247–260.
Urbanization as a major cause of biotic homogenization.Crossref | GoogleScholarGoogle Scholar |

McKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and animals. Urban Ecosystems 11, 161–176.
Effects of urbanization on species richness: a review of plants and animals.Crossref | GoogleScholarGoogle Scholar |

Meirmans, P. G., and Hedrick, P. W. (2011). Assessing population structure: FST and related measures. Molecular Ecology 11, 5–18.
Assessing population structure: FST and related measures.Crossref | GoogleScholarGoogle Scholar |

Miller, J. R., and Hobbs, R. J. (2002). Conservation where people live and work. Conservation Biology 16, 330–337.
Conservation where people live and work.Crossref | GoogleScholarGoogle Scholar |

Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., and Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403, 853–858.
Biodiversity hotspots for conservation priorities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhs1Olsr4%3D&md5=f64529b2f706aa7bc3728d86d5e0e2f9CAS | 10706275PubMed |

Nei, M. (1973). Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America 70, 3321–3323.
Analysis of gene diversity in subdivided populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2FlsFCrtQ%3D%3D&md5=164970f715c85f765980c51f755f625aCAS | 4519626PubMed |

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89, 583–590.
| 1:STN:280:DC%2BC3crpt1Kqtg%3D%3D&md5=a08134a4c96f7d9c8f524a0820640c42CAS | 17248844PubMed |

Noel, S., Ouellet, M., Galois, P., and Lapointe, F. J. (2007). Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conservation Genetics 8, 599–606.
Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1ynt70%3D&md5=49c08b3dcb52613679f08e88c00c219dCAS |

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=8dec2fef59f9d3c3b24f47911f482685CAS | 10835412PubMed |

Read, J. L. (1992). Influence of habitats, climate, grazing and mining on terrestrial vertebrates at Olympic Dam, South Australia. The Rangeland Journal 14, 143–156.
Influence of habitats, climate, grazing and mining on terrestrial vertebrates at Olympic Dam, South Australia.Crossref | GoogleScholarGoogle Scholar |

Richmond, Q. J., Duncan, T. R., Ashton, K. G., and Zamundio, K. R. (2009). Delayed genetic effects of habitat fragmentation on the ecologically specialized Florida sand skink (Plestiodon reynoldsi). Conservation Genetics 10, 1281–1297.
Delayed genetic effects of habitat fragmentation on the ecologically specialized Florida sand skink (Plestiodon reynoldsi).Crossref | GoogleScholarGoogle Scholar |

Riley, S. P. D., Pollinger, P. D., Sauvajot, R. M., York, E. C., Bromley, C., Fuller, T. K., and Wayne, R. K. (2006). A southern California freeway is a physical and social barrier to gene flow in carnivores. Molecular Ecology 15, 1733–1741.
A southern California freeway is a physical and social barrier to gene flow in carnivores.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmtlGrs7w%3D&md5=11e7849cc630de79ee3c807e7ff6cf7fCAS |

Shepard, D. B., Kuhns, A. R., Dreslik, M. J., and Phillps, C. A. (2008). Roads as barriers to animal movement in fragmented landscapes. Animal Conservation 11, 288–296.
Roads as barriers to animal movement in fragmented landscapes.Crossref | GoogleScholarGoogle Scholar |

Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science 236, 787–792.
Gene flow and the geographic structure of natural populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3gs1Wruw%3D%3D&md5=bbf8fd11865027e7e08b82ed9b25d6b1CAS | 3576198PubMed |

Smith, S. M., and Stow, A. J. (2008). Isolation and characterisation of microsatellite loci from the coppertail skink (Ctenotus taeniolatus). Molecular Ecology Resources 8, 923–925.
Isolation and characterisation of microsatellite loci from the coppertail skink (Ctenotus taeniolatus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptlWhtro%3D&md5=8aaf90d10938f9070a4ced4c42d8fcf0CAS | 21585931PubMed |

Sumner, J., Jessop, T., Paetkau, D., and Moritz, C. (2004). Limited effect of anthropogenic habitat fragmentation on molecular diversity in a rain forest skink, Gnypetoscincus queenslandiae. Molecular Ecology 13, 259–269.
Limited effect of anthropogenic habitat fragmentation on molecular diversity in a rain forest skink, Gnypetoscincus queenslandiae.Crossref | GoogleScholarGoogle Scholar | 14717885PubMed |

Sunnucks, P., and Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobian (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobian (Hemiptera: Aphididae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Kgurk%3D&md5=e3ae96f860d5e87f96c773d3dcf4398bCAS | 8742640PubMed |

Templeton, A. R., Shaw, K., Routman, E., and Davis, S. K. (1990). The genetic consequences of habitat fragmentation. Annals of the Missouri Botanical Garden 77, 13–27.
The genetic consequences of habitat fragmentation.Crossref | GoogleScholarGoogle Scholar |

United Nations Department of Economic and Social Affairs/Population Division (2012). World Urbanization Prospects: The 2011 Revision.

Urquhart, J, Wang, Y, and Fu, J (2009). Historical vicariance and male-mediated gene flow in the toad-headed lizards, Phrynocelphalus prezwalskii Molecular Ecology 18, 3714–3729.
| 1:CAS:528:DC%2BD1MXht1WhtrbI&md5=157533415e45ef8c13a4b95a6e529818CAS | 19674299PubMed |

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
Micro-checker: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=953af9dbdebc811d6f3951a35fbdd53dCAS |

Vandergast, A. G., Lewallen, E. A., Deas, J., Bohonak, A. J., Weissman, D. B., and Fisher, R. N. (2009). Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae). Journal of Insect Conservation 13, 329–345.
Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae).Crossref | GoogleScholarGoogle Scholar |

Vucetich, J. A., and Waite, T. A. (2000). Is one migrant per generation sufficient for the genetic management of fluctuating populations? Animal Conservation 3, 261–266.
Is one migrant per generation sufficient for the genetic management of fluctuating populations?Crossref | GoogleScholarGoogle Scholar |

Whitlock, M. C., and McCauley, D. E. (1999). Indirect measures of gene flow and migration: FST = 1/(4Nm+1). Heredity 82, 117–125.
Indirect measures of gene flow and migration: FST = 1/(4Nm+1).Crossref | GoogleScholarGoogle Scholar | 10098262PubMed |

Wilcox, B. A., and Murphy, D. D. (1985). Conservation strategy: the effects of fragmentation on extinction. American Naturalist 125, 879–887.
Conservation strategy: the effects of fragmentation on extinction.Crossref | GoogleScholarGoogle Scholar |

Wright, S. (1931). Evolution in Mendelian populations. Genetics 16, 97–159.
| 1:STN:280:DC%2BD2s%2FmsVGqsw%3D%3D&md5=7c337dc55d2435889a9827af65d99799CAS | 17246615PubMed |