Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Prevalence of beak and feather disease virus in wild Platycercus elegans: comparison of three tissue types using a probe-based real-time qPCR test

Justin R. Eastwood A C , Mathew L. Berg A , Briana Spolding B , Katherine L. Buchanan A , Andrew T. D. Bennett A and Ken Walder B
+ Author Affiliations
- Author Affiliations

A Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Vic. 3217, Australia.

B Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Vic. 3217, Australia.

C Corresponding author. Email: jreas@deakin.edu.au

Australian Journal of Zoology 63(1) 1-8 https://doi.org/10.1071/ZO14052
Submitted: 7 July 2014  Accepted: 24 November 2014   Published: 15 January 2015

Abstract

The detection of avian viruses in wild populations has considerable conservation implications. For DNA-based studies, feathers may be a convenient sample type for virus screening and are, therefore, an increasingly common technique. This is despite recent concerns about DNA quality, ethics, and a paucity of data comparing the reliability and sensitivity of feather sampling to other common sample types such as blood. Alternatively, skeletal muscle tissue may offer a convenient sample to collect from dead birds, which may reveal viraemia. Here, we describe a probe-based quantitative real-time PCR for the relative quantification of beak and feather disease virus (BFDV), a pathogen of serious conservation concern for parrots globally. We used this method to test for BFDV in wild crimson rosellas (Platycercus elegans), and compared three different sample types. We detected BFDV in samples from 29 out of 84 individuals (34.5%). However, feather samples provided discordant results concerning virus presence when compared with muscle tissue and blood, and estimates of viral load varied somewhat between different sample types. This study provides evidence for widespread infection of BFDV in wild crimson rosellas, but highlights the importance of sample type when generating and interpreting qualitative and quantitative avian virus data.

Additional keywords: Australian birds, conservation, parrots, wildlife management.


References

Altizer, S., Harvell, D., and Friedle, E. (2003). Rapid evolutionary dynamics and disease threats to biodiversity. Trends in Ecology & Evolution 18, 589–596.
Rapid evolutionary dynamics and disease threats to biodiversity.Crossref | GoogleScholarGoogle Scholar |

Australian Department of the Environment and Heritage (2005). Threat abatement plan for beak and feather disease virus affecting endangered psittacine species. Commonwealth of Australia, Canberra. Available at: http://www.environment.gov.au/system/files/resources/5764cda0-5e94-48c7-8841-49b09ff7398c/files/beak-feather-tap.pdf [verified 18 March 2014].

Baillie, J. E., Hilton-Taylor, C., and Stuart, S. N. (Eds) (2004). ‘2004 IUCN Red List of Threatened Species: a Global Species Assessment.’ (IUCN: Gland, Switzerland & Cambridge, UK).

Bassami, M. R., Ypelaar, I., Berryman, D., Wilcox, G. E., and Raidal, S. R. (2001). Genetic diversity of beak and feather disease virus detected in psittacine species in Australia. Virology 279, 392–400.
Genetic diversity of beak and feather disease virus detected in psittacine species in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvFOgtw%3D%3D&md5=f5fff720e994263e064124f51eefa75eCAS | 11162795PubMed |

Berg, M. L., and Bennett, A. T. D. (2010). The evolution of plumage colouration in parrots: a review. Emu 110, 10–20.
The evolution of plumage colouration in parrots: a review.Crossref | GoogleScholarGoogle Scholar |

Berg, M., and Ribot, R. (2008). A simple, inexpensive trap for capturing parrots and other cavity nesting birds. Corella 32, 78–79.

Bruford, M. W., Hanotte, O., Brookfield, J. F. Y., and Burke, T. (1998). ‘Multilocus and single-locus DNA fingerprinting. In ‘Molecular Genetic Analysis of Populations: A Practical Approach’. 2nd edn. (Ed. A. R. Hoelzel.) pp. 287–336. (IRL Press: Oxford.)

Busquets, N., Abad, F. X., Alba, A., Dolz, R., Allepuz, A., Rivas, R., Ramis, A., Darji, A., and Majó, N. (2010). Persistence of highly pathogenic avian influenza virus (H7N1) in infected chickens: feather as a suitable sample for diagnosis. The Journal of General Virology 91, 2307–2313.
Persistence of highly pathogenic avian influenza virus (H7N1) in infected chickens: feather as a suitable sample for diagnosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtF2rtbjM&md5=adf5672c4a93fbf162b00beea29d082fCAS | 20484562PubMed |

Carvalho, L. S., Knott, B., Berg, M. L., Bennett, A. T. D., and Hunt, D. M. (2011). Ultraviolet-sensitive vision in long-lived birds. Proceedings of the Royal Society B: Biological Sciences 278, 107–114.
Ultraviolet-sensitive vision in long-lived birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmt1GlurY%3D&md5=8ebe97d0234d6af299d7fc08d6b90d99CAS | 20667872PubMed |

Daszak, P., Cunningham, A. A., and Hyatt, A. D. (2000). Emerging infectious diseases of wildlife – threats to biodiversity and human health. Science 287, 443–449.
Emerging infectious diseases of wildlife – threats to biodiversity and human health.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXntl2jtw%3D%3D&md5=906b31a46fe036a3d0cceab8a1651142CAS | 10642539PubMed |

Davidson, I., and Skoda, I. (2005). The impact of feather use on the detection and study of DNA viral pathogens in commercial poultry. World’s Poultry Science Journal 61, 407–417.
The impact of feather use on the detection and study of DNA viral pathogens in commercial poultry.Crossref | GoogleScholarGoogle Scholar |

Dhinakar Raj, G., Aarthi, S., Selvabharathi, R., Raman, M., Blake, D. P., and Tomley, F. M. (2013). Real-time PCR-based quantification of Eimeria genomes: a method to outweigh underestimation of genome numbers due to PCR inhibition. Avian Pathology 42, 304–308.
Real-time PCR-based quantification of Eimeria genomes: a method to outweigh underestimation of genome numbers due to PCR inhibition.Crossref | GoogleScholarGoogle Scholar |

Doneley, R. J. T. (2003). Acute beak and feather disease in juvenile African grey parrots – an uncommon presentation of a common disease. Australian Veterinary Journal 81, 206–207.
Acute beak and feather disease in juvenile African grey parrots – an uncommon presentation of a common disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c7osVCmtA%3D%3D&md5=4ffee79658d4d050f2086c922253f643CAS |

Eastwood, J. R., Berg, M. L., Ribot, R. F. H., Raidal, S. R., Buchanan, K. L., Walder, K. R., and Bennett, A. T. D. (2014). Phylogenetic analysis of beak and feather disease virus across a host ring-species complex. Proceedings of the National Academy of Sciences of the United States of America 111, 14 153–14 158.
Phylogenetic analysis of beak and feather disease virus across a host ring-species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhsFCisbfM&md5=fe0b648dec9840480d30b2fdcb9e4bceCAS |

Erlich, H. A., Gelfand, D., and Sninsky, J. J. (1991). Recent advances in the polymerase chain reaction. Science 252, 1643–1651.
Recent advances in the polymerase chain reaction.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXltVOitb8%3D&md5=f259f3a21df16e9385786a2ebd2138bdCAS | 2047872PubMed |

Griffiths, R., Double, M. C., Orr, K., and Dawson, R. J. G. (1998). A DNA test to sex most birds. Molecular Ecology 7, 1071–1075.
A DNA test to sex most birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlslGmt7c%3D&md5=5ace3bdd79dc50dd9eaeb1973dcbdeccCAS | 9711866PubMed |

Harkins, G. W., Martin, D. P., Christoffels, A., and Varsani, A. (2014). Towards inferring the global movement of beak and feather disease virus. Virology 450–451, 24–33.
Towards inferring the global movement of beak and feather disease virus.Crossref | GoogleScholarGoogle Scholar | 24503064PubMed |

Heath, L., Martin, D. P., Warburton, L., Perrin, M., Horsfield, W., Kingsley, C., Rybicki, E. P., and Williamson, A. L. (2004). Evidence of unique genotypes of beak and feather disease virus in southern Africa. Journal of Virology 78, 9277–9284.
Evidence of unique genotypes of beak and feather disease virus in southern Africa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntVKhs74%3D&md5=824481ef689a909d2a0b88157c258592CAS | 15308722PubMed |

Hess, M., Scope, A., and Heincz, U. (2004). Comparitive sensitivity of polymerase chain reaction diagnosis of psittacine beak and feather disease on feather samples, cloacal swabs and blood from budgerigars (Melopsittacus undulates, Shaw 18005). Avian Pathology 33, 477–481.
Comparitive sensitivity of polymerase chain reaction diagnosis of psittacine beak and feather disease on feather samples, cloacal swabs and blood from budgerigars (Melopsittacus undulates, Shaw 18005).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Wrsb4%3D&md5=3a994a1080f4032f4ffee0b6f0d1da2eCAS | 15545027PubMed |

Joseph, L., Dolman, G., Donnellan, S., Saint, K. M., Berg, M. L., and Bennett, A. T. D. (2008). Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots. Proceedings of the Royal Society B: Biological Sciences 275, 2431–2440.
Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots.Crossref | GoogleScholarGoogle Scholar | 18664434PubMed |

Julian, L., Lorenzo, A., Chenuet, J.-P., Bonzon, M., Marchal, C., Vignon, L., Collings, D. A., Walters, M., Jackson, B., and Varsani, A. (2012). Evidence of multiple introductions of beak and feather disease virus into the Pacific islands of Nouvelle-Calédonie (New Caledonia). The Journal of General Virology 93, 2466–2472.
Evidence of multiple introductions of beak and feather disease virus into the Pacific islands of Nouvelle-Calédonie (New Caledonia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs12ku7bF&md5=6c21f99ef06cbb712422273dec97d5b4CAS | 22855782PubMed |

Julian, L., Piasecki, T., Chrząstek, K., Walters, M., Muhire, B., Harkins, G. W., Martin, D. P., and Varsani, A. (2013). Extensive recombination detected among beak and feather disease virus isolates from breeding facilities in Poland. The Journal of General Virology 94, 1086–1095.
Extensive recombination detected among beak and feather disease virus isolates from breeding facilities in Poland.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXnsV2lu7Y%3D&md5=c60b2d40b267e31c08c80cda7fd0c569CAS | 23324468PubMed |

Katoh, H., Ohya, K., and Fukushi, H. (2008). Development of novel real-time PCR assays for detecting DNA virus infections in psittaciform birds. Journal of Virological Methods 154, 92–98.
Development of novel real-time PCR assays for detecting DNA virus infections in psittaciform birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWrsbbF&md5=b05357952632968bb272577da55907b1CAS | 18824037PubMed |

Khalesi, B., Bonne, N., Stewart, M., Sharp, M., and Raidal, S. (2005). A comparison of haemagglutination, haemagglutination inhibition and PCR for the detection of psittacine beak and feather disease virus infection and a comparison of isolates obtained from loriids. The Journal of General Virology 86, 3039–3046.
A comparison of haemagglutination, haemagglutination inhibition and PCR for the detection of psittacine beak and feather disease virus infection and a comparison of isolates obtained from loriids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFOqu7%2FP&md5=f3294a7ba2dc78a90d6fb3bcac00704cCAS | 16227226PubMed |

Kiatipattanasakul-Banlunara, W., Tantileartcharoen, R., Katayama, K., Suzuki, K., Lekdumrogsak, T., Nakayama, H., and Doi, K. (2002). Psittacine beak and feather disease in three captive sulphur-crested cockatoos (Cacatua galerita) in Thailand. The Journal of Veterinary Medical Science 64, 527–529.
Psittacine beak and feather disease in three captive sulphur-crested cockatoos (Cacatua galerita) in Thailand.Crossref | GoogleScholarGoogle Scholar | 12130840PubMed |

Knott, B., Berg, M. L., Morgan, E. R., Buchanan, K. L., Bowmaker, J. K., and Bennett, A. T. D. (2010). Avian retinal oil droplets: dietary manipulation of colour vision? Proceedings of the Royal Society B: Biological Sciences 277, 953–962.
Avian retinal oil droplets: dietary manipulation of colour vision?Crossref | GoogleScholarGoogle Scholar | 19939843PubMed |

Knott, B., Davies, W. I. L., Carvalho, L. S., Berg, M. L., Buchanan, K. L., Bowmaker, J. K., Bennett, A. T. D., and Hunt, D. M. (2013). How parrots see their colours: novelty in the visual pigments of Platycercus elegans. The Journal of Experimental Biology 216, 4454–4461.
How parrots see their colours: novelty in the visual pigments of Platycercus elegans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjt1SgtLw%3D&md5=478325b09d64c642126fd2f944caa8deCAS | 24259259PubMed |

Kundu, S., Faulkes, C. G., Greenwood, A. G., Jones, C. G., Kaiser, P., Lyne, O. D., Black, S. A., Chowrimootoo, A., and Groombridge, J. J. (2012). Tracking viral evolution during a disease outbreak: the rapid and complete selective sweep of a circovirus in the endangered echo parakeet. Journal of Virology 86, 5221–5229.
Tracking viral evolution during a disease outbreak: the rapid and complete selective sweep of a circovirus in the endangered echo parakeet.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmtFGltrg%3D&md5=af4904926b4dd2f8438c7cebd6f8d537CAS | 22345474PubMed |

Latimer, K. S., Rakich, P. M., Niagro, F. D., Branson, W. R., Iii, W. L. S., Campagnoli, R. P., Pesti, D. A., and Lukert, P. D. (1991). An updated review of psittacine beak and feather disease. Journal of the Association of Avian Veterinarians 5, 211–220.
An updated review of psittacine beak and feather disease.Crossref | GoogleScholarGoogle Scholar |

Lessells, C. M., and Boag, P. T. (1987). Unrepeatable repeatabilities: a common mistake. The Auk 104, 116–121.
Unrepeatable repeatabilities: a common mistake.Crossref | GoogleScholarGoogle Scholar |

Mackay, I. M., Arden, K. E., and Nitsche, A. (2002). Real-time PCR in virology. Nucleic Acids Research 30, 1292–1305.
Real-time PCR in virology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XisVaksbY%3D&md5=126383b9ddfe49d74cfb4245d460ed5fCAS | 11884626PubMed |

Massaro, M., Ortiz-Catedral, L., Julian, L., Galbraith, J., Kurenbach, B., Kearvell, J., Kemp, J., Hal, J., Elkington, S., Taylor, G., Greene, T., Wetering, J., Wetering, M., Pryde, M., Dilks, P., Heber, S., Steeves, T., Walters, M., Shaw, S., Potter, J., Farrant, M., Brunton, D., Hauber, M., Jackson, B., Bell, P., Moorhouse, R., McInnes, K., and Varsani, A. (2012). Molecular characterisation of beak and feather disease virus (BFDV) in New Zealand and its implications for managing an infectious disease. Archives of Virology 157, 1651–1663.
Molecular characterisation of beak and feather disease virus (BFDV) in New Zealand and its implications for managing an infectious disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1OmtLfF&md5=cabee856fdbc71bfa848148caa3fb7c7CAS | 22638639PubMed |

McDonald, P. G., and Griffith, S. C. (2011). To pluck or not to pluck: the hidden ethical and scientific costs of relying on feathers as a primary source of DNA. Journal of Avian Biology 42, 197–203.
To pluck or not to pluck: the hidden ethical and scientific costs of relying on feathers as a primary source of DNA.Crossref | GoogleScholarGoogle Scholar |

Medzhitov, R., Schneider, D. S., and Soares, M. P. (2012). Disease tolerance as a defense strategy. Science 335, 936–941.
Disease tolerance as a defense strategy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisFarsbg%3D&md5=559f9911ccbbcc1fd8fb1f89088c77e5CAS | 22363001PubMed |

Newton, I. (1998). ‘Population Limitation in Birds.’ (Academic Press.)

Niagro, F., Forsthoefel, A., Lawther, R., Kamalanathan, L., Ritchie, B., Latimer, K., and Lukert, P. (1998). Beak and feather disease virus and porcine circovirus genomes: intermediates between the geminiviruses and plant circoviruses. Archives of Virology 143, 1723–1744.
Beak and feather disease virus and porcine circovirus genomes: intermediates between the geminiviruses and plant circoviruses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXms1Ggsrw%3D&md5=0ed48db19a6bad53d6ef2aa6f10ad771CAS | 9787657PubMed |

Ortiz-Catedral, L., McInnes, K., Hauber, M. E., and Brunton, D. H. (2009). First report of beak and feather disease virus (BFDV) in wild red-fronted parakeets (Cyanoramphus novaezelandiae) in New Zealand. Emu 109, 244–247.
First report of beak and feather disease virus (BFDV) in wild red-fronted parakeets (Cyanoramphus novaezelandiae) in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Pass, D. A., and Perry, R. A. (1984). The pathology of psittacine beak and feather disease. Australian Veterinary Journal 61, 69–74.
The pathology of psittacine beak and feather disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3ls1egtQ%3D%3D&md5=932cdbc0264d9b6fe1fe9159c583df24CAS | 6743145PubMed |

Peters, A., Patterson, E. I., Baker, B. G., Holdsworth, M., Sarker, S., Ghorashi, S. A., and Raidal, S. R. (2014). Evidence of psittacine beak and feather disease virus spillover into wild critically endangered orange-bellied parrots (Neophema chrysogaster). Journal of Wildlife Diseases , .
Evidence of psittacine beak and feather disease virus spillover into wild critically endangered orange-bellied parrots (Neophema chrysogaster).Crossref | GoogleScholarGoogle Scholar | 24484492PubMed |

Rahaus, M., and Wolff, M. H. (2003). Psittacine beak and feather disease: a first survey of the distribution of beak and feather disease virus inside the population of captive psittacine birds in Germany. Journal of Veterinary Medicine, Series B 50, 368–371.
Psittacine beak and feather disease: a first survey of the distribution of beak and feather disease virus inside the population of captive psittacine birds in Germany.Crossref | GoogleScholarGoogle Scholar |

Raidal, S. R., and Cross, G. M. (1995). Acute necrotizing hepatitis caused by experimental infection with psittacine beak and feather disease virus. Journal of Avian Medicine and Surgery 9, 36–40.

Raidal, S., McElnea, C., and Cross, G. (1993). Seroprevalence of psittacine beak and feather disease in wild psittacine birds in New South Wales. Australian Veterinary Journal 70, 137–139.
Seroprevalence of psittacine beak and feather disease in wild psittacine birds in New South Wales.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3s3mtlymuw%3D%3D&md5=4f25e812afefbe468ebc172ef482ba4cCAS | 8494522PubMed |

Raidal, S., Bonne, N., Stewart, M., and Shearer, P. L. (2008). Standard diagnostic tests for beak and feather disease virus (BFDV). Australian Government Department of the Environment, Water, Heritage and the Arts, Canberra. Available at: http://www.environment.gov.au/system/files/resources/d51f18c3-459e-4f9f-884a-5aa3642ece4d/files/49540.pdf [verified 18 March 2014].

Raue, R., Johne, R., Crosta, L., Bürkle, M., Gerlach, H., and Müller, H. (2004). Nucleotide sequence analysis of a C1 gene fragment of psittacine beak and feather disease virus amplified by real-time polymerase chain reaction indicates a possible existence of genotypes. Avian Pathology 33, 41–50.
Nucleotide sequence analysis of a C1 gene fragment of psittacine beak and feather disease virus amplified by real-time polymerase chain reaction indicates a possible existence of genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvV2lsrw%3D&md5=1168c8e15855f01d204b86350e840cd4CAS | 14681067PubMed |

Ribot, R. F. H., Berg, M. L., Buchanan, K. L., Komdeur, J., Joseph, L., and Bennett, A. T. D. (2009). Does the ring species concept predict vocal variation in the crimson rosella, Platycercus elegans, complex? Animal Behaviour 77, 581–593.
Does the ring species concept predict vocal variation in the crimson rosella, Platycercus elegans, complex?Crossref | GoogleScholarGoogle Scholar |

Ribot, R. F. H., Berg, M. L., Buchanan, K. L., and Bennett, A. T. D. (2011). Fruitful use of bioacoustic alarm stimuli as a deterrent for crimson rosellas (Platycercus elegans). Emu 111, 360–367.
Fruitful use of bioacoustic alarm stimuli as a deterrent for crimson rosellas (Platycercus elegans).Crossref | GoogleScholarGoogle Scholar |

Ribot, R. F. H., Buchanan, K. L., Endler, J. A., Joseph, L., Bennett, A. T. D., and Berg, M. L. (2012). Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex. PLoS ONE 7, e50484.
Learned vocal variation is associated with abrupt cryptic genetic change in a parrot species complex.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVygsr7E&md5=b77fda5677897a045836c41c7c3e4c4eCAS |

Ribot, R. F. H., Berg, M. L., Buchanan, K. L., and Bennett, A. T. D. (2013). Is there variation in the response to contact call playbacks across the hybrid zone of the parrot Platycercus elegans? Journal of Avian Biology 44, 399–407.
Is there variation in the response to contact call playbacks across the hybrid zone of the parrot Platycercus elegans?Crossref | GoogleScholarGoogle Scholar |

Ritchie, B. W., Niagro, F. D., Lukert, P. D., Steffens, W. L., and Latimer, K. S. (1989). Characterization of a new virus from cockatoos with psittacine beak and feather disease. Virology 171, 83–88.
Characterization of a new virus from cockatoos with psittacine beak and feather disease.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXkslCntb4%3D&md5=20d6721429763c3b97b13113ab567535CAS | 2741350PubMed |

Ritchie, B., Niagro, F., Latimer, K., Steffens, W., Pesti, D., Ancona, J., and Lukert, P. (1991). Routes and prevalence of shedding of psittacine beak and feather disease virus. American Journal of Veterinary Research 52, 1804–1809.
| 1:STN:280:DyaK387lt1Ghsw%3D%3D&md5=4d4cc0e571545d59d60f05edfa862344CAS | 1785722PubMed |

Sarker, S., Patterson, E. I., Peters, A., Baker, G. B., Forwood, J. K., Ghorashi, S. A., Holdsworth, M., Baker, R., Murray, N., and Raidal, S. R. (2014). Mutability dynamics of an emergent single stranded DNA virus in a naïve host. PLoS ONE 9, e85370.
Mutability dynamics of an emergent single stranded DNA virus in a naïve host.Crossref | GoogleScholarGoogle Scholar | 24416396PubMed |

Schmittgen, T. D., and Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3, 1101–1108.
Analyzing real-time PCR data by the comparative CT method.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVemt7c%3D&md5=7bab26347f46387e248cc93d8e37c10dCAS | 18546601PubMed |

Shearer, P. L., Sharp, M., Bonne, N., Clark, P., and Raidal, S. R. (2009). A quantitative, real-time polymerase chain reaction assay for beak and feather disease virus. Journal of Virological Methods 159, 98–104.
A quantitative, real-time polymerase chain reaction assay for beak and feather disease virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtVektbs%3D&md5=192ce1cc6516196010201f2716079d1fCAS | 19442852PubMed |

Stallknecht, D. E., Luttrell, M. P., Poulson, R., Goekjian, V., Niles, L., Dey, A., Krauss, S., and Webster, R. G. (2012). Detection of avian influenza viruses from shorebirds: evaluation of surveillance and testing approaches. Journal of Wildlife Diseases 48, 382–393.
Detection of avian influenza viruses from shorebirds: evaluation of surveillance and testing approaches.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rktVGisw%3D%3D&md5=ccb54918748881ecbe304d9c5dc0be93CAS | 22493113PubMed |

Taberlet, P., Waits, L. P., and Luikart, G. (1999). Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution 14, 323–327.
Noninvasive genetic sampling: look before you leap.Crossref | GoogleScholarGoogle Scholar |

Todd, D. (2000). Circoviruses: immunosuppressive threats to avian species: a review. Avian Pathology 29, 373–394.
Circoviruses: immunosuppressive threats to avian species: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M7htFersQ%3D%3D&md5=29731e8edf244bf5fa37d6fa0e34198bCAS | 19184829PubMed |

van Riper, C., Riper, S. G. v., Goff, M. L., and Laird, M. (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56, 327–344.
The epizootiology and ecological significance of malaria in Hawaiian land birds.Crossref | GoogleScholarGoogle Scholar |

Varsani, A., Regnard, G. L., Bragg, R., Hitzeroth, I. I., and Rybicki, E. P. (2011). Global genetic diversity and geographical and host-species distribution of beak and feather disease virus isolates. The Journal of General Virology 92, 752–767.
Global genetic diversity and geographical and host-species distribution of beak and feather disease virus isolates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkslSmtLw%3D&md5=05bd122dfcb4d4d7932e5dd0927682e5CAS | 21177924PubMed |

Viera, A. J., and Garrett, J. M. (2005). Understanding interobserver agreement: the kappa statistic. Family Medicine 37, 360–363.
| 15883903PubMed |

Weimerskirch, H. (2004). Diseases threaten Southern Ocean albatrosses. Polar Biology 27, 374–379.
Diseases threaten Southern Ocean albatrosses.Crossref | GoogleScholarGoogle Scholar |

Yamamoto, Y., Nakamura, K., Okamatsu, M., Miyazaki, A., Yamada, M., and Mase, M. (2008). Detecting avian influenza virus (H5N1) in domestic duck feathers. Emerging Infectious Diseases 14, 1671–1672.
Detecting avian influenza virus (H5N1) in domestic duck feathers.Crossref | GoogleScholarGoogle Scholar | 18826847PubMed |

Ypelaar, I., Bassami, M., Wilcox, G., and Raidal, S. (1999). A universal polymerase chain reaction for the detection of psittacine beak and feather disease virus. Veterinary Microbiology 68, 141–148.
A universal polymerase chain reaction for the detection of psittacine beak and feather disease virus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVCgu7g%3D&md5=24054fc0b25f7362808aa5a0817148ccCAS | 10501171PubMed |