Population structure and genetic diversity of the black-footed rock-wallaby (Petrogale lateralis MacDonnell Ranges race)
Laura Ruykys A B D and Melanie L. Lancaster A CA School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
B Present address: Mt Gibson Sanctuary, Australian Wildlife Conservancy, Great Northern Highway, Wubin, WA 6612, Australia.
C Present address: Healesville Sanctuary, Zoos Victoria, Badger Creek Road, Healesville, Vic. 3777, Australia.
D Corresponding author. Email: laura.ruykys@australianwildlife.org
Australian Journal of Zoology 63(2) 91-100 https://doi.org/10.1071/ZO14009
Submitted: 23 February 2014 Accepted: 30 January 2015 Published: 30 March 2015
Abstract
Genetic diversity is a critical determinant of the persistence of populations because it enables animals to evolve and adapt to environmental change. Black-footed rock-wallabies (Petrogale lateralis MacDonnell Ranges race), or warru, once occupied virtually all suitable habitat within the arid zone of central Australia. However, only two metapopulations now remain in the southern portion of this race’s range (South Australia) and a recovery program has involved both in- and ex-situ conservation initiatives. To establish whether genetic factors such as inbreeding may be inhibiting population recovery, the current study examined the population structure and genetic diversity of animals in the three largest-known extant colonies using six polymorphic microsatellite loci. Bayesian and frequency-based assignment tests revealed substantial population structuring (pairwise FST values 0.122–0.278), congruent with geographically distinct colonies. There was some evidence of dispersal, with two migrants identified across two colonies, but little evidence for extensive interbreeding among colonies. Population substructure was evidenced by high values of FIS in one colony. All populations possessed relatively high levels of genetic diversity (allelic richness: 5.1–7.5, heterozygosity: 0.70–0.72). On the basis of a genetic analysis of parentage, approximately half of all males and females in the known metapopulations produced offspring. This has likely contributed to the retention of genetic diversity across colonies. These findings have implications for the management of both the in- and ex-situ warru populations.
Additional keywords: conservation genetics, inbreeding, macropod, microsatellite.
References
Briscoe, D. A., Calaby, J. H., Close, R. L., Maynes, G. M., Murtagh, C. E., and Sharman, G. B. (1982). Isolation, introgression and genetic variation in rock-wallabies. In ‘Species at Risk: Research in Australia’. (Eds R. H. Groves, and W. D. L. Ride.) pp. 73 – 87. (Australian Academy of Science: Canberra.)Cegelski, C. C., Waits, L. P., and Anderson, N. J. (2003). Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches. Molecular Ecology 12, 2907–2918.
| Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3srltFCitA%3D%3D&md5=1c78c47dd85b086281a606ae343bd99bCAS | 14629372PubMed |
Cheepko-Sade, B. D., and Tang Halpin, Z. (1987). ‘Mammalian Dispersal Patterns: the Effects of Social Structure on Population Genetics.’ (University of Chicago Press: New York.)
Copley, P. B., and Alexander, P. J. (1997). Overview of the status of rock-wallabies in South Australia. Australian Mammalogy 19, 153–162.
Dieckmann, U., O’Hara, B., and Weisser, W. (1999). The evolutionary ecology of dispersal. Trends in Ecology & Evolution 14, 88–90.
| The evolutionary ecology of dispersal.Crossref | GoogleScholarGoogle Scholar |
Earl, D. A., and vonHoldt, B. M. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics 4, 359–361.
| STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method.Crossref | GoogleScholarGoogle Scholar |
Eldridge, M. D. B., Bell, J. N., Pearson, D., and Close, R. L. (1992). Identification of rock wallabies in the Warburton region of Western Australia, as Petrogale lateralis MacDonnell Ranges race. Australian Mammalogy 15, 115–119.
Eldridge, M. D. B., King, J. M., Loupis, A. K., Spencer, P. B. S., Taylor, A. C., Pope, L. C., and Hall, G. P. (1999). Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby. Conservation Biology 13, 531–541.
| Unprecedented low levels of genetic variation and inbreeding depression in an island population of the black-footed rock-wallaby.Crossref | GoogleScholarGoogle Scholar |
Eldridge, M. D. B., Kinnear, J. E., and Onus, M. L. (2001). Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data. Molecular Ecology 10, 2867–2876.
| Source population of dispersing rock-wallabies (Petrogale lateralis) identified by assignment tests on multilocus genotypic data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD387nslOlug%3D%3D&md5=aec1feb1aa59e41345fe3d5b25049df8CAS |
Eldridge, M. D. B., Piggott, M. P., and Hazlitt, S. L. (2010). Population genetic structure of the Macropodoidea: a review. In ‘Macropods: the Biology of Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Coulson and M. D. B. Eldridge.) pp. 35–51. (CSIRO Publishing: Melbourne.)
Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 2611–2620.
| Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=e54527b29e5d66907883028f469a4cebCAS | 15969739PubMed |
Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=1f8a0fa70ca8ca0e5dfbb1971efebedcCAS |
Falush, D., Stephens, M., and Pritchard, J. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587.
| 1:CAS:528:DC%2BD3sXnvF2ntrk%3D&md5=84cad1c1a497d8336655aa7912384527CAS | 12930761PubMed |
Frankham, R., Ballou, J. D., and Briscoe, D. A. (2002). ‘Introduction to Conservation Genetics.’ (Cambridge University Press: Cambridge.)
Frankham, R., Ballou, J. D., Eldridge, M. D., Lacy, R. C., Ralls, K., Dudash, M. R., and Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465–475.
| Predicting the probability of outbreeding depression.Crossref | GoogleScholarGoogle Scholar | 21486369PubMed |
Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.
Hawken, R. J., Maccarone, P., Toder, R., Marshall Graves, J. A., and Maddox, J. F. (1999). Isolation and characterization of marsupial IL5 genes. Immunogenetics 49, 942–948.
| Isolation and characterization of marsupial IL5 genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFygs7k%3D&md5=f2af6155d17aca035d47259cc03ceacfCAS | 10501836PubMed |
Hazlitt, S. L., Goldizen, A. W., and Eldridge, M. D. B. (2006a). Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia. Conservation Genetics 7, 675–689.
| Significant patterns of population genetic structure and limited gene flow in a threatened macropodid marsupial despite continuous habitat in southeast Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVWgtLvI&md5=f30e211c422e3b97ce7cc65ac1b62c32CAS |
Hazlitt, S. L., Sigg, D. P., Eldridge, M. D. B., and Goldizen, A. W. (2006b). Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata). Molecular Ecology 15, 2997–3007.
| Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vovVeqsA%3D%3D&md5=01983e3706ff1ba147c39d559b55ac04CAS | 16911216PubMed |
Hunter, M. L., and Gibbs, J. P. (2007). ‘Fundamentals of Conservation Biology.’ (Blackwell Publishing Ltd: Oxford.)
Jones Lennon, M., Taggart, D. A., Temple-Smith, P. D., and Eldridge, M. D. B. (2011). The impact of isolation and bottlenecks on genetic diversity in the Pearson Island population of the black-footed rock-wallaby (Petrogale lateralis pearsoni; Marsupialia: Macropodidae). Australian Mammalogy 33, 152–161.
| The impact of isolation and bottlenecks on genetic diversity in the Pearson Island population of the black-footed rock-wallaby (Petrogale lateralis pearsoni; Marsupialia: Macropodidae).Crossref | GoogleScholarGoogle Scholar |
Kalinowski, S. T., Taper, M. L., and Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099–1106.
| Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.Crossref | GoogleScholarGoogle Scholar | 17305863PubMed |
Kinnear, J. E., Onus, M. L., and Bromilow, R. N. (1988). Fox control and rock-wallaby population dynamics. Australian Wildlife Research 15, 435–450.
| Fox control and rock-wallaby population dynamics.Crossref | GoogleScholarGoogle Scholar |
Kinnear, J. E., Onus, M. L., and Sumner, N. R. (1998). Fox control and rock-wallaby population dynamics – II. An update. Wildlife Research 25, 81–88.
| Fox control and rock-wallaby population dynamics – II. An update.Crossref | GoogleScholarGoogle Scholar |
Kinnear, J. E., Krebs, C. J., Pentland, C., Orell, P., Holme, C., and Karvinen, R. (2010). Predator-baiting experiments for the conservation of rock-wallabies in Western Australia: a 25-year review with recent advances. Wildlife Research 37, 57–67.
Manel, S., Berthier, P., and Luikart, G. (2002). Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes. Conservation Biology 16, 650–659.
| Detecting wildlife poaching: identifying the origin of individuals with Bayesian assignment tests and multilocus genotypes.Crossref | GoogleScholarGoogle Scholar |
Mitrovski, P, Heinze, D. A., Broome, L, Hoffmann, A. A., and Weeks, A. R. (2007). High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia. Molecular Ecology 16, 75–87.
| High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXit1Cltb8%3D&md5=4e3455b9308f3a201055054308136b4fCAS | 17181722PubMed |
Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
| Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=9a31bfc21759db2791c1e0ee1442b6f3CAS |
Muhic, J., Abbott, E., and Ward, M. J. (2012). The warru (Petrogale lateralis MacDonnell Ranges race) reintroduction project on the Anangu Pitjantjatjara Yankunytjatjara Lands, South Australia. Ecological Management & Restoration 13, 89–92.
| The warru (Petrogale lateralis MacDonnell Ranges race) reintroduction project on the Anangu Pitjantjatjara Yankunytjatjara Lands, South Australia.Crossref | GoogleScholarGoogle Scholar |
Nunney, L. (1993). The influence of mating system and overlapping generations on effective population size. Evolution 47, 1329–1341.
| The influence of mating system and overlapping generations on effective population size.Crossref | GoogleScholarGoogle Scholar |
Paetkau, D., Calvert, W., Stirling, I., and Strobeck, C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology 4, 347–354.
| Microsatellite analysis of population structure in Canadian polar bears.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXntValu78%3D&md5=b72cf32a61a481422a19a38db6dd0cadCAS | 7663752PubMed |
Paetkau, D., Slade, R., Burdens, M., and Estoup, A. (2004). Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology 13, 55–65.
| Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhs1WksLY%3D&md5=7f2d368ecb3ea598c536f0895f2851e6CAS | 14653788PubMed |
Pearson, D. J. (2013). Recovery plan for five species of rock wallabies: Black-footed rock wallaby (Petrogale lateralis), Rothschild rock wallaby (Petrogale rothschildi), Short-eared rock wallaby (Petrogale brachyotis), Monjon (Petrogale burbidgei) and Nabarlek (Petrogale concinna) 2012–2022. Department of Parks and Wildlife, Perth, WA.
Piggott, M., Banks, S., and Taylor, A. (2006). Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA. Molecular Ecology 15, 93–105.
| Population structure of brush-tailed rock-wallaby (Petrogale penicillata) colonies inferred from analysis of faecal DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XitVGkt78%3D&md5=df6c354e221cf642f1bc4df4c6b0c3ffCAS | 16367833PubMed |
Piry, S., Alapetite, A., Cornuet, J.-M., Paetkau, D., Baudouin, L., and Estoup, A. (2004). GENECLASS2: a software for genetic assignment and first-generation migrant detection. The Journal of Heredity 95, 536–539.
| GENECLASS2: a software for genetic assignment and first-generation migrant detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotlWlsrk%3D&md5=4e215a413718a4ea52586300e7eabc7cCAS | 15475402PubMed |
Pope, L. C., Sharp, A., and Moritz, C. (1996). Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Molecular Ecology 5, 629–640.
| Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsValsb4%3D&md5=dc21b14f13b71229d63516f5cad2eafbCAS | 8873466PubMed |
Potter, S., Cooper, S. J. B., Metcalfe, C. J., Taggart, D. A., and Eldridge, M. D. B. (2012a). Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia. Molecular Phylogenetics and Evolution 62, 640–652.
| Phylogenetic relationships of rock-wallabies, Petrogale (Marsupialia: Macropodidae) and their biogeographic history within Australia.Crossref | GoogleScholarGoogle Scholar | 22122943PubMed |
Potter, S., Eldridge, M. D. B., Cooper, S. J. B., Paplinska, J. Z., and Taggart, D. A. (2012b). Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis). Conservation Genetics 13, 937–952.
| Habitat connectivity, more than species’ biology, influences genetic differentiation in a habitat specialist, the short-eared rock-wallaby (Petrogale brachyotis).Crossref | GoogleScholarGoogle Scholar |
Pritchard, J., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=8dec2fef59f9d3c3b24f47911f482685CAS | 10835412PubMed |
Rannala, B., and Mountain, J. L. (1997). Detecting immigration by using multilocus genotypes. Proceedings of the National Academy of Sciences of the United States of America 94, 9197–9201.
| Detecting immigration by using multilocus genotypes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Kls7w%3D&md5=94862600f2daca65a78d678080a54e49CAS | 9256459PubMed |
Read, J., and Ward, M. J. (2007). Movements, dens, radiotelemetry and status of the New Well warru (black-footed rock-wallaby) population in the A
Read, J., and Ward, M. J. (2011). Warru recovery plan: recovery of Petrogale lateralis MacDonnell Ranges race in South Australia, 2010–2020. Department of Environment and Natural Resources, Adelaide, South Australia.
Rice, W. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
| Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |
Robinson, A., Copley, P., Canty, P., Baker, L., and Nesbitt, B. (Eds) (2003). ‘A Biological Survey of the A
Ruykys, L. (2011). Ecology of warru (black-footed rock-wallaby, Petrogale lateralis MacDonnell Ranges race) in the A
Ruykys, L., Ward, M. J., Taggart, D. A., and Breed, W. G. (2011). Preliminary spatial behaviour of warru (Petrogale lateralis MacDonnell Ranges race) in the Anangu Pitjantjatjara Yankunytjatjara Lands, South Australia. Australian Mammalogy 33, 181–188.
| Preliminary spatial behaviour of warru (Petrogale lateralis MacDonnell Ranges race) in the Anangu Pitjantjatjara Yankunytjatjara Lands, South Australia.Crossref | GoogleScholarGoogle Scholar |
Slatkin, M. (1987). Gene flow and the geographic structure of natural populations. Science 236, 787–792.
| Gene flow and the geographic structure of natural populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3gs1Wruw%3D%3D&md5=bbf8fd11865027e7e08b82ed9b25d6b1CAS | 3576198PubMed |
Spencer, P. B. S., and Marsh, H. D. (1997). Microsatellite DNA fingerprinting confirms dizygotic twinning and paternity in the allied rock-wallaby, Petrogale assimilis (Marsupialia: Macropodidae). Australian Mammalogy 19, 279–280.
Spencer, P. B. S., Odorico, D., Jones, S. J., Marsh, H. D., and Miller, D. J. (1995). Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis). Molecular Ecology 4, 523–525.
| Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFertLk%3D&md5=75a11ec65fea9ba3ba8e7d3b5decf0ceCAS |
Spencer, P. B. S., Adams, M., Marsh, H., Miller, D. J., and Eldridge, M. D. B. (1997). High levels of genetic variability in an isolated colony of rock-wallabies (Petrogale assimilis): evidence from three classes of molecular markers. Australian Journal of Zoology 45, 199–210.
| High levels of genetic variability in an isolated colony of rock-wallabies (Petrogale assimilis): evidence from three classes of molecular markers.Crossref | GoogleScholarGoogle Scholar |
Spencer, P. B. S., Horsup, A. B., and Marsh, H. D. (1998). Enhancement of reproductive success through mate choice in a social rock-wallaby, Petrogale assimilis (Macropodidae) as revealed by microsatellite markers. Behavioral Ecology and Sociobiology 43, 1–9.
| Enhancement of reproductive success through mate choice in a social rock-wallaby, Petrogale assimilis (Macropodidae) as revealed by microsatellite markers.Crossref | GoogleScholarGoogle Scholar |
Taggart, D., Schultz, D., White, C., Whitehead, P., Underwood, G., and Phillips, K. (2005). Cross-fostering, growth and reproductive studies in the brush-tailed rock-wallaby, Petrogale penicillata (Marsupialia: Macropodidae): efforts to accelerate breeding in a threatened marsupial species. Australian Journal of Zoology 53, 313–323.
| Cross-fostering, growth and reproductive studies in the brush-tailed rock-wallaby, Petrogale penicillata (Marsupialia: Macropodidae): efforts to accelerate breeding in a threatened marsupial species.Crossref | GoogleScholarGoogle Scholar |
Taggart, D. A., Schultz, D. J., Fletcher, T. P., Friend, J. A., Smith, I. G., Breed, W. G., and Temple-Smith, P. D. (2010). Cross-fostering and short-term pouch young isolation in macropodoid marsupials: implications for conservation and species management. In ‘Macropods: the Biology of Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Coulson and M. D. B. Eldridge.) pp. 263–278. (CSIRO Publishing: Melbourne.)
Taylor, A. C., and Cooper, D. W. (1998). A set of tammar wallaby (Macropus eugenii) microsatellites tested for genetic linkage. Molecular Ecology 7, 925–931.
| 1:CAS:528:DyaK1cXlsFKlur4%3D&md5=2472424f46b821181536ee84f3d59bd9CAS | 9691494PubMed |
Van Dyck, S., and Strahan, R. (Eds) (2008). ‘The Mammals of Australia.’ (Reed New Holland Publishers: Sydney.)
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P., and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
| MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=953af9dbdebc811d6f3951a35fbdd53dCAS |
Wahlund, S. (1928). Zusammensetzung von Populationen und Korrelations erscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11, 65–106.
| Zusammensetzung von Populationen und Korrelations erscheinungen vom Standpunkt der Vererbungslehre aus betrachtet.Crossref | GoogleScholarGoogle Scholar |
Ward, M. J., Urban, R., Read, J., Dent, A., Clarke, A., and Partridge, T. (2011a). Status of warru (Petrogale lateralis MacDonnell Ranges race) in the Anangu Pitjantjatjara Yankunytjatjara Lands of South Australia. 1. Distribution and declines. Australian Mammalogy 33, 135–141.
| Status of warru (Petrogale lateralis MacDonnell Ranges race) in the Anangu Pitjantjatjara Yankunytjatjara Lands of South Australia. 1. Distribution and declines.Crossref | GoogleScholarGoogle Scholar |
Ward, M. J., Ruykys, L., Van Weenen, J., de Little, S., Dent, A., Clarke, A., and Partridge, T. (2011b). Status of warru (Petrogale lateralis MacDonnell Ranges race) in the Anangu Pitjantjatjara Yankunytjatjara Lands of South Australia. 2. Population dynamics. Australian Mammalogy 33, 142–151.
| Status of warru (Petrogale lateralis MacDonnell Ranges race) in the Anangu Pitjantjatjara Yankunytjatjara Lands of South Australia. 2. Population dynamics.Crossref | GoogleScholarGoogle Scholar |
Weir, B., and Cockerham, C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
| Estimating F-statistics for the analysis of population structure.Crossref | GoogleScholarGoogle Scholar |
Willers, N., Berry, O., and Roberts, J. D. (2014). Fine-scale genetic structure and the design of optimal fertility control for an overabundant mammal. Conservation Genetics , .
| Fine-scale genetic structure and the design of optimal fertility control for an overabundant mammal.Crossref | GoogleScholarGoogle Scholar |
Woinarski, J. C. Z., Pavey, C., Kerrigan, R., Cowie, I., and Ward, S. (Eds) (2007). ‘Lost from Our Landscape: Threatened Species of the Northern Territory.’ (Northern Territory Department of Natural Resources, Environment and the Arts, Northern Territory Government: Darwin.)
Woinarski, J. C. Z., Burbidge, A. A., and Harrison, P. L. (2014). ‘The Action Plan for Australian Mammals 2012.’ (CSIRO Publishing: Melbourne.)
Zenger, K. R., and Cooper, D. W. (2001a). Characterization of 14 macropod microsatellite genetic markers. Animal Genetics 32, 166–167.
| Characterization of 14 macropod microsatellite genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1egtbw%3D&md5=75c1552370971119c388c926167c8c01CAS | 11493269PubMed |
Zenger, K. R., and Cooper, D. W. (2001b). A set of highly polymorphic microsatellite markers developed for the eastern grey kangaroo (Macropus giganteus). Molecular Ecology Notes 1, 98–100.
| A set of highly polymorphic microsatellite markers developed for the eastern grey kangaroo (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslaksbc%3D&md5=378b946cb2c5d0980e8d06b745337859CAS |
Zenger, K. R., Eldridge, M. D. B., Pope, L. C., and Cooper, D. W. (2003). Characterisation and cross-species utility of microsatellite markers within kangaroos, wallabies and rat kangaroos (Macropodoidea: Marsupialia). Australian Journal of Zoology 51, 587–596.
| Characterisation and cross-species utility of microsatellite markers within kangaroos, wallabies and rat kangaroos (Macropodoidea: Marsupialia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsVChurs%3D&md5=23462eaf0cf42790aa1510552b0625cbCAS |