Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
REVIEW

Marsupial immunology bounding ahead

Katherine Belov A E , Robert D. Miller B , Julie M. Old C and Lauren J. Young D
+ Author Affiliations
- Author Affiliations

A Faculty of Veterinary Science, University of Sydney, Sydney, NSW 2006, Australia.

B Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.

C Native and Pest Animal Unit, School of Science and Health, Hawkesbury, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.

D School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4702, Australia.

E Corresponding author. Email: kathy.belov@sydney.edu.au

Australian Journal of Zoology 61(1) 24-40 https://doi.org/10.1071/ZO12111
Submitted: 2 November 2012  Accepted: 9 April 2013   Published: 3 June 2013

Abstract

Marsupial immune responses were previously touted as ‘primitive’ but we now know that the marsupial immune system is complex and on par with that of eutherian mammals. In this manuscript we review the field of marsupial immunology, focusing on basic anatomy, developmental immunology, immunogenetics and evolution. We concentrate on advances to our understanding of marsupial immune gene architecture, made possible by the recent sequencing of the opossum, tammar wallaby and Tasmanian devil genomes. Characterisation of immune gene sequences now paves the way for the development of immunological assays that will allow us to more accurately study health and disease in marsupials.

Additional keywords: immunity, immunoglobulin, metatherian, MHC.


References

Ashman, R. B., and Keast, D. (1973). The development of mitogen responses in the quokka, Setonix brachyurus. In ‘Phylogeny of Thymus and Bone Marrow – Bursa Cells’. (Eds R. K. Wright and E. L. Cooper.) pp. 257–265. (Elsevier/North Holland Biomedical Press: Amsterdam.)

Ashman, R., and Papadimitriou, J. (1975a). Development of the lymphoid tissue in a marsupial, S. brachyurus. Acta Anatomica 91, 594–611.
Development of the lymphoid tissue in a marsupial, S. brachyurus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M3itFGmtA%3D%3D&md5=65abfec3452eb98d4e049f0f927961dcCAS | 1154997PubMed |

Ashman, R., and Papadimitriou, J. (1975b). The effect of thymectomy on the lymphoid tissues of the quokka (Setonix brachyurus). Australian Journal of Wildlife Diseases 53, 129–136.
| 1:STN:280:DyaE28%2FhvVSrtQ%3D%3D&md5=0fd284f943ad011d5cf064b2a67ba1e2CAS |

Ashman, R., Keast, D., Stanley, N. F., and Waring, H. (1972). The in vitro response to phytohaemagglutinin (PHA) of leucocytes from intact and thymectomised quokkas. The Australian Journal of Experimental Biology and Medical Science 50, 337–345.
The in vitro response to phytohaemagglutinin (PHA) of leucocytes from intact and thymectomised quokkas.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s7ivVaiuw%3D%3D&md5=8d114dd16c7492ff679227bf1d75da45CAS | 4143969PubMed |

Aveskogh, M., and Hellman, L. (1998). Evidence for an early appearance of modern post-switch isotypes in mammalian evolution; cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica. European Journal of Immunology 28, 2738–2750.
Evidence for an early appearance of modern post-switch isotypes in mammalian evolution; cloning of IgE, IgG and IgA from the marsupial Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXmtFaht7Y%3D&md5=59d3064c634a9ee771855578e7f20f24CAS | 9754561PubMed |

Azzali, G., and Didio, L. J. A. (1965). The lymphatic system of Didelphys azarae and Didelphys marsupialis. The American Journal of Anatomy 116, 449–469.
The lymphatic system of Didelphys azarae and Didelphys marsupialis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF2M7ivFelsA%3D%3D&md5=403e3596e187f59c841a77075d348938CAS | 14324684PubMed |

Baker, M. L., and Miller, R. D. (2007). Evolution of mammalian CD1: marsupial CD1 is not orthologous to the eutherian isoforms and is a pseudogene in the opossum Monodelphis domestica. Immunology 121, 113–121.
Evolution of mammalian CD1: marsupial CD1 is not orthologous to the eutherian isoforms and is a pseudogene in the opossum Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltFartr8%3D&md5=33f2c0d4a70ce33503c6f58074beda33CAS | 17244156PubMed |

Baker, M. L., Gemmell, E., and Gemmell, R. T. (1999). Ontogeny of the immune system of the brushtail possum, Trichosurus vulpecula. The Anatomical Record 256, 354–365.
Ontogeny of the immune system of the brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FlslKgug%3D%3D&md5=4fc637e976e43c5bf24dea1f041d3b02CAS | 10589022PubMed |

Baker, M. L., Belov, K., and Miller, R. D. (2005). Unusually similar patterns of antibody V segment diversity in distantly related marsupials. Journal of Immunology 174, 5665–5671.
| 1:CAS:528:DC%2BD2MXjsVeru7g%3D&md5=b84c29ddf93bdc00f82a2c50586bb6a8CAS |

Baker, M. L., Indiviglio, S., Nyberg, A. M., Rosenberg, G. H., Lindblad-Toh, K., Miller, R. D., and Papenfuss, A. T. (2007). Analysis of a set of Australian northern brown bandicoot expressed sequence tags with comparison to the genome sequence of the South American grey short tailed opossum. BMC Genomics 8, 50.
Analysis of a set of Australian northern brown bandicoot expressed sequence tags with comparison to the genome sequence of the South American grey short tailed opossum.Crossref | GoogleScholarGoogle Scholar | 17298671PubMed |

Baker, M. L., Melman, S. D., Huntley, J., and Miller, R. D. (2009). Evolution of the opossum major histocompatibility complex: evidence for diverse alternative splice patterns and low polymorphism among Class I genes. Immunology 128, e418–e431.
Evolution of the opossum major histocompatibility complex: evidence for diverse alternative splice patterns and low polymorphism among Class I genes.Crossref | GoogleScholarGoogle Scholar | 19191910PubMed |

Banks, S. C., Dubach, J., Viggers, K. L., and Lindenmayer, D. B. (2010). Adult survival and microsatellite diversity in possums: effects of major histocompatibility complex-linked microsatellite diversity but not multilocus inbreeding estimators. Oecologia 162, 359–370.
Adult survival and microsatellite diversity in possums: effects of major histocompatibility complex-linked microsatellite diversity but not multilocus inbreeding estimators.Crossref | GoogleScholarGoogle Scholar | 19830457PubMed |

Barnes, T. S., Hinds, L. A., Jenkins, D. J., and Coleman, G. T. (2007). Precocious development of hydatid cysts in a macropodid host. International Journal for Parasitology 37, 1379–1389.
Precocious development of hydatid cysts in a macropodid host.Crossref | GoogleScholarGoogle Scholar | 17599844PubMed |

Basden, K., Cooper, D. W., and Deane, E. M. (1996). Development of the blood-forming tissues of the tammar wallaby Macropus eugenii. Reproduction, Fertility and Development 8, 989–994.
Development of the blood-forming tissues of the tammar wallaby Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2s%2FltFaqtw%3D%3D&md5=17b5c37b3ba09a0a2b698d63fa823637CAS |

Basden, K., Cooper, D. W., and Deane, E. M. (1997). Development of the lymphoid tissues of the tammar wallaby Macropus eugenii. Reproduction, Fertility and Development 9, 243–254.
Development of the lymphoid tissues of the tammar wallaby Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2szlt1WmsQ%3D%3D&md5=9719c0c9ffb96092757d3a0c467c2980CAS |

Belov, K. (2012). Contagious cancer: lessons from the devil and the dog. BioEssays 34, 285–292.
Contagious cancer: lessons from the devil and the dog.Crossref | GoogleScholarGoogle Scholar | 22383221PubMed |

Belov, K., Harrison, G. A., and Cooper, D. W. (1998). Molecular cloning of the cDNA encoding the constant region of the immunoglobulin A heavy chain (C alpha) from a marsupial: Trichosurus vulpecula (common brushtail possum). Immunology Letters 60, 165–170.
Molecular cloning of the cDNA encoding the constant region of the immunoglobulin A heavy chain (C alpha) from a marsupial: Trichosurus vulpecula (common brushtail possum).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhs1Gitrg%3D&md5=9fe01697b13749fe62513b5fa9932f5dCAS | 9557959PubMed |

Belov, K., Harrison, G. A., Miller, R. D., and Cooper, D. W. (1999a). Isolation and sequence of a cDNA coding for the heavy chain constant region of IgG from the Australian brushtail possum, Trichosurus vulpecula. Molecular Immunology 36, 535–541.
Isolation and sequence of a cDNA coding for the heavy chain constant region of IgG from the Australian brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsVyrsbk%3D&md5=ff371a92f0f5fe0c502e64995f922e01CAS | 10475608PubMed |

Belov, K., Harrison, G. A., Miller, R. D., and Cooper, D. W. (1999b). Molecular cloning of the brushtail possum (Trichosurus vulpecula) immunglobulin E heavy chain constant region. Molecular Immunology 36, 1255–1261.
Molecular cloning of the brushtail possum (Trichosurus vulpecula) immunglobulin E heavy chain constant region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGntL8%3D&md5=0e9ad5336a0f1d988831fda8d4ce0491CAS | 10684965PubMed |

Belov, K., Harrison, G. A., Rosenberg, G. H., Miller, R. D., and Cooper, D. W. (1999c). Isolation and comparison of the IgM heavy chain constant regions from Australian (Trichosurus vulpecula) and American (Monodelphis domestica) marsupials. Developmental and Comparative Immunology 23, 649–656.
Isolation and comparison of the IgM heavy chain constant regions from Australian (Trichosurus vulpecula) and American (Monodelphis domestica) marsupials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXotFOgs70%3D&md5=11bb0b8ae4ecc555ec6fa0b91bdebf6aCAS | 10579393PubMed |

Belov, K., Harrison, G. A., Miller, R. D., and Cooper, D. W. (2001). Characterisation of the kappa light chain of the brushtail possum (Trichosurus vulpecula). Veterinary Immunology and Immunopathology 78, 317–324.
Characterisation of the kappa light chain of the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisVamtLo%3D&md5=7a46e1d3b61e61084aa388f750597686CAS | 11292532PubMed |

Belov, K., Harrison, G. A., Miller, R. D., and Cooper, D. W. (2002a). Molecular cloning of four lambda light chain cDNAs from the Australian brushtail possum Trichosurus vulpecula. European Journal of Immunogenetics 29, 95–99.
Molecular cloning of four lambda light chain cDNAs from the Australian brushtail possum Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XivFCqsL4%3D&md5=0ee266f1434645334d9ba55b8919d652CAS | 11918633PubMed |

Belov, K., Nguyen, M. A., Zenger, K. R., and Cooper, D. W. (2002b). Ontogeny of immunoglobulin expression in the brushtail possum (Trichosurus vulpecula). Developmental and Comparative Immunology 26, 599–602.
Ontogeny of immunoglobulin expression in the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFKkt7k%3D&md5=4cf59846114f45d54d51dafe51ac0aeaCAS | 12074924PubMed |

Belov, K., Lam, M. K., and Colgan, D. J. (2004). Marsupial MHC Class II DAB and DBB genes are not orthologous to the eutherian β gene families. The Journal of Heredity 95, 338–345.
Marsupial MHC Class II DAB and DBB genes are not orthologous to the eutherian β gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFyju7g%3D&md5=33d0212faef710faed2a1b8872e3b4a3CAS | 15247314PubMed |

Belov, K., Deakin, J. E., Papenfuss, A. T., Baker, M. L., Melman, S. D., et al (2006). Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biology 4, e46.
Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex.Crossref | GoogleScholarGoogle Scholar | 16435885PubMed |

Belov, K., Sanderson, C. E., Deakin, J. E., Wong, E. S., Assange, D., et al (2007). Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Research 17, 982–991.
Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnvVWktbY%3D&md5=42dd1fa1f02b3393db1ade91124e4666CAS | 17495011PubMed |

Bininda-Emonds, O. R., Cardillo, M., Jones, K. E., MacPhee, R. D., Beck, R. M., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507–512.
The delayed rise of present-day mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsV2itb0%3D&md5=463d879e6f561ea696e891435245e450CAS | 17392779PubMed |

Block, M. (1964). The blood forming tissues of the newborn opossum (Didelphys virginiana). I. Normal development through about the one hundredth day of life Ergebnisse der Anatomie und Entwicklungsgeschichte 37, 1–237.

Browning, T. L., Belov, K., Miller, R. D., and Eldridge, M. D. (2004). Molecular cloning and characterization of the polymorphic MHC class II DBB from the tammar wallaby (Macropus eugenii). Immunogenetics 55, 791–795.
Molecular cloning and characterization of the polymorphic MHC class II DBB from the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhsFeqt7Y%3D&md5=0c22407bd8fe0abd3d10c8c47fea431cCAS | 14752580PubMed |

Brozek, C. M., and Ley, R. D. (1991). Production of interleukin-1 in a South American opossum (Monodelphis domestica). Developmental and Comparative Immunology 15, 401–412.
Production of interleukin-1 in a South American opossum (Monodelphis domestica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XlslSmtQ%3D%3D&md5=90691487b197115b69f775deac1b5f7cCAS | 1773863PubMed |

Brozek, C., Kaleta, E., Kusewitt, D., and Ley, R. (1992). Proliferative responses of lymphocytes to mitogens in the grey, short-tailed opossum, Monodelphis domestica. Veterinary Immunology and Immunopathology 31, 11–19.
Proliferative responses of lymphocytes to mitogens in the grey, short-tailed opossum, Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383jsl2mug%3D%3D&md5=1543b1385f4cee25f0143d6f12384471CAS | 1570674PubMed |

Bryant, B. J. (1974). The histo- and morphogenesis of lymph nodes: an interpretation of some mechanisms. Journal of the Reticuloendothelial Society 16, 96–104.
| 1:STN:280:DyaE2M7jsFClsA%3D%3D&md5=a40252ead543abf7de4fc242105976f7CAS | 4455898PubMed |

Bryant, B. J. (1977). The development of the immunohaematopoietic and lymphatic systems of Marmosa mitis. In ‘The Biology of the Marsupials’. (Ed. D. Hunsker.) (Academic Press: New York.)

Bryant, B. J., and Shifrine, M. (1974). The immunohaematopoietic and lymphatic systems of Marmosa mitis: a developmental survey. Journal of the Reticuloendothelial Society 16, 105–113.
| 1:STN:280:DyaE2M7jsFCmtA%3D%3D&md5=a0e0de26f3c7d707a45188de503245cdCAS | 4455893PubMed |

Buddle, B. M., and Young, L. J. (2000). Immunobiology of mycobacterial infections in marsupials. Developmental and Comparative Immunology 24, 517–529.
Immunobiology of mycobacterial infections in marsupials.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3kslWgsw%3D%3D&md5=d1be70c24c258e21b627709d002ae8a6CAS | 10785276PubMed |

Buddle, B. M., Skinner, M. A., and Chambers, M. A. (2000). Immunological approaches to the control of tuberculosis in wildlife reservoirs. Veterinary Immunology and Immunopathology 74, 1–16.
Immunological approaches to the control of tuberculosis in wildlife reservoirs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3is1Wmsg%3D%3D&md5=1fdba31fdb639af5446525601920033cCAS | 10760386PubMed |

Canfield, P. J., and Hemsley, S. (2000). The roles of histology and immunohistology in the investigation of marsupial disease and normal lymphoid tissue. Developmental and Comparative Immunology 24, 455–471.
The roles of histology and immunohistology in the investigation of marsupial disease and normal lymphoid tissue.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3kslWhtA%3D%3D&md5=31940447a1353b215cf46e90fc98c443CAS | 10785271PubMed |

Canfield, P., Hemsley, S., and Connolly, J. (1996). Histological and immunological study of the developing and involuting superficial cervical thymus in the koala (Phascolarctos cinereus). Journal of Anatomy 189, 159–169.
| 8771407PubMed |

Carman, R, Simonian, M. R., Old, J. M., Jacques, N. A., and Deane, E. M. (2008). Immunohistochemistry using antibodies to the Cathelicidin LL37/hCAP18 in the tammar wallaby (Macropus eugenii). Tissue and Cell 40, 459–466.
Immunohistochemistry using antibodies to the Cathelicidin LL37/hCAP18 in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht12gu7rJ&md5=e2ad55c62f3e855d17916f0bdcfde0d8CAS | 18597803PubMed |

Cheng, Y., and Belov, K. (2012). Evolution of the Major Histocompatibility Complex: insights from characterisation of marsupial genes. eLS , .
Evolution of the Major Histocompatibility Complex: insights from characterisation of marsupial genes.Crossref | GoogleScholarGoogle Scholar |

Cheng, Y., Siddle, H. V., Beck, S., Eldridge, M. D., and Belov, K. (2009). High levels of genetic variation at MHC class II DBB loci in the tammar wallaby (Macropus eugenii). Immunogenetics 61, 111–118.
High levels of genetic variation at MHC class II DBB loci in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOntLs%3D&md5=4d9f6f5658c15a8e8c6f10d3601e8ccaCAS | 19082823PubMed |

Cheng, Y., Stuart, A., Morris, K., Taylor, R., Siddle, H., Deakin, J., Jones, M., Amemiya, C. T., and Belov, K. (2012a). Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC. BMC Genomics 13, 87.
Antigen-presenting genes and genomic copy number variations in the Tasmanian devil MHC.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhslGqu7rM&md5=2a72cfa307aba050ca10e03468c50075CAS | 22404855PubMed |

Cheng, Y. Y., Sanderson, C., Jones, M., and Belov, K. (2012b). Low MHC Class II diversity in the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 64, 525–533.
Low MHC Class II diversity in the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XosFCrtrs%3D&md5=cdc30ad50c48beb4db60afe3da238bd2CAS |

Chiarini-Garcia, H., and Pereira, F. M. (1999). A comparative study of lymph node mast cell populations in five marsupial species. Tissue & Cell 31, 318–326.
A comparative study of lymph node mast cell populations in five marsupial species.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MvhtV2itQ%3D%3D&md5=250ab7c685844fe11ce2ab9bbaa275daCAS |

Chiarini-Garcia, H, Santos, A, and Machado, C (2000). Mast cell types and cell-to-cell interactions in lymph nodes of the opossum Didelphis albiventris. Anatomy and Embryology 201, 197–206.
Mast cell types and cell-to-cell interactions in lymph nodes of the opossum Didelphis albiventris.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c7ivFChsg%3D%3D&md5=d439feed078781b2d51786bc97c6660aCAS | 10664180PubMed |

Cisternas, P. A., and Armati, P. J. (1999). Development of the thymus, spleen, lymph nodes and liver in the marsupial, Isoodon macrourus (northern brown bandicoot, Peramelidae). Anatomy and Embryology 200, 433–443.
Development of the thymus, spleen, lymph nodes and liver in the marsupial, Isoodon macrourus (northern brown bandicoot, Peramelidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1MzovFGisg%3D%3D&md5=295a107accae21ceec9193699786447eCAS | 10460481PubMed |

Cisternas, P. A., and Armati, P. J. (2000). Immune system cell markers in the northern brown bandicoot, Isoodon macrourus. Developmental and Comparative Immunology 24, 771–782.
Immune system cell markers in the northern brown bandicoot, Isoodon macrourus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkvFSltLo%3D&md5=4c8a6174faf540195069f01da16d0522CAS | 10906390PubMed |

Cooke, M. M., and Alley, M. R. (2002). Development of the lung of the brushtail possum, Trichosurus vulpecula. Journal of Anatomy 200, 113–121.
Development of the lung of the brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 11895109PubMed |

Cooper, D. W., and Larsen, E. (2006). Immunocontraception of mammalian wildlife: ecological and immunogenetic issues. Reproduction 132, 821–828.
Immunocontraception of mammalian wildlife: ecological and immunogenetic issues.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmsF2isg%3D%3D&md5=73ee7e75dc962d1ac6f2ace8c36510d9CAS | 17127742PubMed |

Coutinho, H. B., Sewell, H. F., Tighe, P., King, G., Nogueira, J. C., Robalinho, T. I., Coutinho, H., King, G., Sewell, H., Tighe, P., Coutinho, V., Robalinho, T., and Carvalho, A. (1993). Immunocytochemical study of Peyer’s patches follicular-associated epithelium in the marsupial, Didelphis albiventris. Developmental and Comparative Immunology 17, 537–548.
Immunocytochemical study of Peyer’s patches follicular-associated epithelium in the marsupial, Didelphis albiventris.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c7jtFWmsw%3D%3D&md5=7002815a8d51c9242b8f792f1c10e82fCAS | 8299852PubMed |

Coutinho, H. B., Nogueira, J. C., King, G., Coutinho, V. B., Robalinho, T. I., Amorim, A. M., Cavalcanti, V. M., Robins, R. A., and Sewell, H. F. (1994). Immunocytochemical study of the ontogeny of Peyer’s patches in the Brazilian marsupial Didelphis albiventris. Journal of Anatomy 185, 347–354.
| 7961141PubMed |

Coutinho, H. B., Sewell, H. F., Tighe, P., King, G., Nogueira, J. C., Robalinho, T. I., Coutinho, V. B., and Cavalcanti, V. M. (1995). Immunocytochemical study of the ontogeny of the marsupial Didelphis albiventris immune system. Journal of Anatomy 187, 37–46.
| 7591984PubMed |

Croix, D. A., Samples, N. K., Vandeberg, J. L., and Stone, W. H. (1989). Immune response of a marsupial (Monodelphis domestica) to sheep red blood cells. Developmental and Comparative Immunology 13, 73–78.
Immune response of a marsupial (Monodelphis domestica) to sheep red blood cells.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1MzlslWqtg%3D%3D&md5=7642476cec2a83abc6abd7840e0513deCAS | 2767312PubMed |

Cui, S. L., and Selwood, L. (2000). cDNA cloning, characterization, expression and recombinant protein production of leukemia inhibitory factor (LIF) from the marsupial, the brushtail possum (Trichosurus vulpecula). Gene 243, 167–178.
cDNA cloning, characterization, expression and recombinant protein production of leukemia inhibitory factor (LIF) from the marsupial, the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFCmsbk%3D&md5=3232086b7a1f238195e26e8a6e0372b4CAS |

Cui, S., Hope, R. M., Rathjen, J., Voyle, R. B., and Rathjen, P. D. (2001). Structure, sequence and function of a marsupial LIF gene: conservation of IL-6 family cytokines. Cytogenetics and Cell Genetics 92, 271–278.
Structure, sequence and function of a marsupial LIF gene: conservation of IL-6 family cytokines.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlvVygtbs%3D&md5=9401b1468c2ad81079a9eddbb22d8c6bCAS | 11435700PubMed |

Cutts, H., and Krause, W. J. (1982). Postnatal development of the spleen in Didelphis virginiana Journal of Anatomy 135, 601–613.
| 1:STN:280:DyaL3s7gvVGlsQ%3D%3D&md5=8fe36e91ad57ee48f01d0b5ffe6a3b10CAS |

Daly, K. A., Digby, M., Lefevre, C., Mailer, S., Thomson, P., Nicholas, K., and Williamson, P. (2007). Analysis of the expression of immunoglobulins throughout lactation suggests two periods of immune transfer in the tammar wallaby (Macropus eugenii). Veterinary Immunology and Immunopathology 120, 187–200.
Analysis of the expression of immunoglobulins throughout lactation suggests two periods of immune transfer in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1agsr%2FO&md5=55a5d0d5a794962145907c21e93f5394CAS | 17727962PubMed |

Deakin, J. E., Belov, K., Curach, N. C., Green, P., and Cooper, D. W. (2005). Variation in level of immune response raises questions about the feasibility of using immunological methods to manage New Zealand brushtail possums. Wildlife Research 32, 1–6.
Variation in level of immune response raises questions about the feasibility of using immunological methods to manage New Zealand brushtail possums.Crossref | GoogleScholarGoogle Scholar |

Deakin, J. E., Siddle, H. V., Cross, J. G., Belov, K., and Graves, J. A. (2007). Class I genes have split from the MHC in the tammar wallaby. Cytogenetic and Genome Research 116, 205–211.
Class I genes have split from the MHC in the tammar wallaby.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXitVCjtLw%3D&md5=ee4bd673aa17124a80dc1faee6b7f784CAS | 17317961PubMed |

Deane, E. M., and Cooper, D. W. (1984). Immunology of pouch young marsupials. I. Levels of immunoglobulin transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos: Macropus robustus, marsupialia). Developmental and Comparative Immunology 8, 863–876.
Immunology of pouch young marsupials. I. Levels of immunoglobulin transferrin and albumin in the blood and milk of euros and wallaroos (hill kangaroos: Macropus robustus, marsupialia).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXpsVSrtw%3D%3D&md5=0f3fd05791066d21463643307e35e67eCAS | 6519341PubMed |

Duckworth, J., Wilson, K., Cui, X., Molinia, F., and Cowan, P. (2007). Immunogenicity and contraceptive potential of three infertility-relevant zona pellucida 2 epitopes in the marsupial brushtail possum (Trichosurus vulpecula). Reproduction 133, 177–186.
Immunogenicity and contraceptive potential of three infertility-relevant zona pellucida 2 epitopes in the marsupial brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1aisr4%3D&md5=2ebb2938b0e44dc322364d57c238ca54CAS | 17244744PubMed |

Duignan, P. J. (2004). Health assessment of wallabies from Kawau Island. Surveillance 31, 16–18.

Duncan, L., Webster, K., Gupta, V., Nair, S., and Deane, E. (2010). Molecular characterisation of the CD79a and CD79b subunits of the B cell receptor complex in the gray short-tailed opossum (Monodelphis domestica) and tammar wallaby (Macropus eugenii): delayed B cell immunocompetence in marsupial neonates. Veterinary Immunology and Immunopathology 136, 235–247.
Molecular characterisation of the CD79a and CD79b subunits of the B cell receptor complex in the gray short-tailed opossum (Monodelphis domestica) and tammar wallaby (Macropus eugenii): delayed B cell immunocompetence in marsupial neonates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXos1yis7w%3D&md5=3bc3986c103ec6390fb735ea1d367c5eCAS | 20399507PubMed |

Duncan, L. G., Nair, S. V., and Deane, E. M. (2012). Immunohistochemical localization of T-lymphocyte subsets in the developing lymphoid tissues of the tammar wallaby (Macropus eugenii). Developmental and Comparative Immunology 38, 475–486.
Immunohistochemical localization of T-lymphocyte subsets in the developing lymphoid tissues of the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xhs1Shtr%2FJ&md5=8f59051b7d99818c351b221377050190CAS | 22929957PubMed |

Edwards, M. J., Hinds, L. A., Deane, E. M., and Deakin, J. E. (2012). A review of complementary mechanisms which protect the developing marsupial pouch young. Developmental and Comparative Immunology 37, 213–220.
A review of complementary mechanisms which protect the developing marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms12rsr0%3D&md5=dab9f1020520f69dce9fa2cb96394569CAS | 22504164PubMed |

Fox, D. H., Rowlands, D. T. J., and Wilson, D. B. (1976). Proliferative reactivity of opossum peripheral blood leukocytes to allogenic cells, mitogens and specific antigens. Transplantation 21, 164–167.
Proliferative reactivity of opossum peripheral blood leukocytes to allogenic cells, mitogens and specific antigens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE287jtVylsw%3D%3D&md5=067ac914b75b28630d8fb38ae1cd78f3CAS |

Fraser, E. A., and Hill, J. P. (1916). The development of the thymus, epithelial bodies and thyroid in the Marsupialia. Part I. Trichosurus vulpecula. Philosophical Transactions of the Royal Society B 207, 1–85.
The development of the thymus, epithelial bodies and thyroid in the Marsupialia. Part I. Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar |

Gouin, N., Deakin, J. E., Miska, K. B., Miller, R. D., Kammerer, C. M., Graves, J. A., VandeBerg, J. L., and Samollow, P. B. (2006). Linkage mapping and physical localization of the major histocompatibility complex region of the marsupial Monodelphis domestica. Cytogenetic and Genome Research 112, .
Linkage mapping and physical localization of the major histocompatibility complex region of the marsupial Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28%2Fps1Omuw%3D%3D&md5=7b48d7d1c59a075dea338fc4161a9b71CAS | 16484784PubMed |

Hanger, J. J., and Heath, T. J. (1994). The arrangements of gut-associated lymphoid tissue and lymph pathways in the koala, Phascolarctos cinereus. Journal of Anatomy 185, 129–134.
| 7559107PubMed |

Harrison, G. A., and Deane, E. M. (1999). cDNA sequence of the lymphotoxin beta chain from a marsupial, Macropus eugenii (Tammar wallaby). Journal of Interferon & Cytokine Research 19, 1099–1102.
cDNA sequence of the lymphotoxin beta chain from a marsupial, Macropus eugenii (Tammar wallaby).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntVOgsLY%3D&md5=e706a9dc2b0321d3a5f13118e39a677aCAS |

Harrison, G. A., and Deane, E. M. (2000). cDNA cloning of lymphotoxin alpha (LT-alpha) from a marsupial, Macropus eugenii. DNA Sequence 10, 399–403.
| 1:CAS:528:DC%2BD3cXmsValu7o%3D&md5=e36922439c1d350510a73cec00d8cedbCAS | 10826697PubMed |

Harrison, G. A., and Wedlock, D. N. (2000). Marsupial cytokines. Structure, function and evolution. Developmental and Comparative Immunology 24, 473–484.
Marsupial cytokines. Structure, function and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXkt1Cku7k%3D&md5=d02a0eb44b9debf66259d7e692c54e16CAS | 10785272PubMed |

Harrison, G. A., Broughton, M. J., Young, L. J., Cooper, D. W., and Deane, E. M. (1999). Conservation of 3 ‘untranslated region elements in tammar wallaby (Macropus eugenii) TNF-alpha mRNA. Immunogenetics 49, 464–467.
Conservation of 3 ‘untranslated region elements in tammar wallaby (Macropus eugenii) TNF-alpha mRNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVKmtrY%3D&md5=121911c923bdbb92f5b15290e4fef5d2CAS | 10199924PubMed |

Harrison, G. A., Young, L. J., Watson, C. M., Miska, K. B., Miller, R. D., and Deane, E. M. (2003). A survey of Type I interferons from a marsupial and monotreme: implications for the evolution of the Type I interferon gene family in mammals. Cytokine 21, 105–119.
A survey of Type I interferons from a marsupial and monotreme: implications for the evolution of the Type I interferon gene family in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivFelu7c%3D&md5=8ef388ebaa6c0b66651e9064df3f8c69CAS | 12697149PubMed |

Harrison, G. A., McNicol, K. A., and Deane, E. M. (2004). Interferon alpha/beta genes from a marsupial, Macropus eugenii. Developmental and Comparative Immunology 28, 927–940.
Interferon alpha/beta genes from a marsupial, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXks12rtbY%3D&md5=ec781ae39171891df739205d840b6b1cCAS | 15183033PubMed |

Hawken, R. J., Maccarone, P., Toder, R., Marshall Graves, J. A., and Maddox, J. F. (1999). Isolation and characterization of marsupial IL5 genes. Immunogenetics 49, 942–948.
Isolation and characterization of marsupial IL5 genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXlsFygs7k%3D&md5=b60ea799cfe9e0a94e989c868155b1b8CAS | 10501836PubMed |

Hayday, A. C. (2000). Gamma delta cells: a right time and a right place for a conserved third way of protection Annual Review of Immunology 18, 975–1026.
Gamma delta cells: a right time and a right place for a conserved third way of protectionCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjs1Gmt70%3D&md5=85745bd70751e2aa6d76c6fdfb831374CAS | 10837080PubMed |

Hayes, T. G. (1968). Studies of a primitive mammalian spleen, the opossum (Didelphis virginiana). Journal of Morphology 124, 445–450.
Studies of a primitive mammalian spleen, the opossum (Didelphis virginiana).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1czmtVSmsg%3D%3D&md5=872e7b4f20dc8c0ce879df014c2c52b3CAS | 5666529PubMed |

Haynes, J. I. (1991). Cervical lymph nodes and mast cells in the marsupial Sminthopsis crassicaudata. The Anatomical Record 231, 7–13.
Cervical lymph nodes and mast cells in the marsupial Sminthopsis crassicaudata.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38%2FovVWmug%3D%3D&md5=8f061dedb33e4bc41a64c025db181204CAS | 1750713PubMed |

Haynes, J. I. (2001). The marsupial and monotreme thymus, revisited. Journal of Zoology 253, 167–173.
The marsupial and monotreme thymus, revisited.Crossref | GoogleScholarGoogle Scholar |

Hemsley, S. W., Canfield, P. J., and Husband, A. J. (1995). Immunohistological staining of lymphoid tissue in four Australian marsupial species using species cross-reactive antibodies. Immunology and Cell Biology 73, 321–325.
Immunohistological staining of lymphoid tissue in four Australian marsupial species using species cross-reactive antibodies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FltFGntA%3D%3D&md5=06de6074d7a25542ed73defb18c1877eCAS | 7493768PubMed |

Hemsley, S. W., Canfield, P. J., and Husband, A. J. (1996). Histological and immunohistological investigation of alimentary tract lymphoid tissue in the koala (Phascolarctos cinereus), brushtail possum (Trichosurus vulpecula) and ringtail possum (Pseudocheirus peregrinus). Journal of Anatomy 188, 279–288.
| 8621326PubMed |

Holland, O. J., Cowan, P. E., Gleeson, D. M., and Chamley, L. W. (2008a). Identification of novel major histocompatibility complex Class I sequences in a marsupial, the brushtail possum (Trichosurus vulpecula). Immunogenetics 60, 609–619.
Identification of novel major histocompatibility complex Class I sequences in a marsupial, the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVKisbrI&md5=ca10319d667d31d2f5865f6943c10492CAS | 18636252PubMed |

Holland, O. J., Cowan, P. E., Gleeson, D. M., and Chamley, L. W. (2008b). Novel alleles in classical major histocompatibility complex Class II loci of the brushtail possum (Trichosurus vulpecula). Immunogenetics 60, 449–460.
Novel alleles in classical major histocompatibility complex Class II loci of the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotV2jtL8%3D&md5=4a2bd60b3ad63c18be4931f1732770eaCAS | 18548245PubMed |

Holland, O. J., Cowan, P. E., Gleeson, D. M., Duckworth, J. A., and Chamley, L. W. (2009). MHC haplotypes and response to immunocontraceptive vaccines in the brushtail possum. Journal of Reproductive Immunology 82, 57–65.
MHC haplotypes and response to immunocontraceptive vaccines in the brushtail possum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFGltbnE&md5=f92e1ccad0b540f78e7824af4cfaf6f4CAS | 19577310PubMed |

Holland, O. J., Cowan, P. E., Gleeson, D. M., Duckworth, J. A., and Chamley, L. W. (2010). Immunocontraceptive vaccines and major histocompatibility complex variation in the brushtail possum. Journal of Reproductive Immunology 86, 1–74.
Immunocontraceptive vaccines and major histocompatibility complex variation in the brushtail possum.Crossref | GoogleScholarGoogle Scholar |

Hubbard, G., Saphire, D., Hackleman, S., Silva, M., Vandeberg, J., and Stone, W. (1991). Ontogeny of the thymus gland of a marsupial (Monodelphis domestica). Laboratory Animal Science 41, 227–232.
| 1:STN:280:DyaK38%2Fkslejtw%3D%3D&md5=b7f16165477af7328d09a3e787e28c8aCAS | 1658459PubMed |

Infante, A. J., Samples, N. K., Croix, D. A., Redding, T. S., VandeBerg, J. L., and Stone, W. H. (1991). Cellular immune response of a marsupial, Monodelphis domestica. Developmental and Comparative Immunology 15, 189–199.
Cellular immune response of a marsupial, Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M3osFaitQ%3D%3D&md5=64a5f9be07823995547a8f4fcf26cbccCAS | 1829419PubMed |

Johnstone, J. (1898). The thymus in marsupials. Zoological Journal of the Linnean Society 26, 537–557.
The thymus in marsupials.Crossref | GoogleScholarGoogle Scholar |

Johnstone, J. (1901). Cervical glands of marsupials. Proceeds and Transactions of the Liverpool Biological Society, Liverpool 15, 354–362.

Jones, M., Cordell, J., Beyers, A., Tse, A., and Mason, D. (1993). Detection of T and B cells in many animal species using cross-reactive anti-peptide antibodies. Journal of Immunology 150, 5429–5435.
| 1:CAS:528:DyaK3sXlslyrsL8%3D&md5=70ae550978e00bd87033d6ed8ee0d17aCAS |

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., and Gittleman, J. L. (2008). Global trends in emerging infectious diseases Nature 451, 990–993.
Global trends in emerging infectious diseasesCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXit1ygurg%3D&md5=9856a215629dd7bbfcac79fd90af1001CAS | 18288193PubMed |

Jurd, R. D. (1994). “Not proper mammals”: immunity in monotremes and marsupials. Comparative Immunology, Microbiology and Infectious Diseases 17, 41–52.
“Not proper mammals”: immunity in monotremes and marsupials.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3ntlCktg%3D%3D&md5=1a88310cc8d368048ffb81c405869162CAS | 8004933PubMed |

Kalmutz, S. (1962). Antibody production in the opossum embryo. Nature 193, 851–853.
Antibody production in the opossum embryo.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF38%2FlsVOltQ%3D%3D&md5=68080161cac7dcd6968d99207095dff4CAS | 14453360PubMed |

Kelley, J., Walter, L., and Trowsdale, J. (2005). Comparative genomics of natural killer cell receptor gene clusters. PLOS Genetics 1, e27.
Comparative genomics of natural killer cell receptor gene clusters.Crossref | GoogleScholarGoogle Scholar |

Kreiss, A., Cheng, Y., Kimble, F., Wells, B., Donovan, S., Belov, K., and Woods, G. M. (2011). Allorecognition in the Tasmanian devil (Sarcophilus harrisii), an endangered marsupial species with limited genetic diversity. PLoS ONE 6, e22402.
Allorecognition in the Tasmanian devil (Sarcophilus harrisii), an endangered marsupial species with limited genetic diversity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVGhtL7E&md5=0ac6d8f240e8aa5410ff0a1f29b854b6CAS | 21811598PubMed |

Kristensen, F., Kristensen, B., and Lazary, S. (1982). The Lymphocyte Stimulation Test in veterinary immunology. Veterinary Immunology and Immunopathology 3, 203–277.
The Lymphocyte Stimulation Test in veterinary immunology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL383ltFyhsw%3D%3D&md5=46292196547a88c00cd231d287ae8956CAS | 6980527PubMed |

La Via, M., Rowlands, D., and Block, M. (1963). Antibody formation in embryos. Science 140, 1219–1220.
Antibody formation in embryos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvlvVeqtw%3D%3D&md5=c1cfa195644c71a097fa99f38a95e20dCAS | 17837507PubMed |

Lam, M. K.-P., Hickson, R. E., Cowan, P. E., and Cooper, D. W. (2000). A major histocompatibility (MHC) microsatellite locus in brushtail possums (Trichosurus vulpecula). Online Journal of Veterinary Research 4, 139–141.

Lam, M. K., Belov, K., Harrison, G. A., and Cooper, D. W. (2001a). Cloning of the MHC Class II DRB cDNA from the brushtail possum (Trichosurus vulpecula). Immunology Letters 76, 31–36.
Cloning of the MHC Class II DRB cDNA from the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht12gurs%3D&md5=c17b1ad75fdf2f9aa35110f0cdb9ee00CAS | 11222910PubMed |

Lam, M. K., Belov, K., Harrison, G. A., and Cooper, D. W. (2001b). An MHC Class I gene in the Australian brushtail possum (Trichosurus vulpecula). Immunogenetics 53, 430–433.
An MHC Class I gene in the Australian brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXls1Kmt78%3D&md5=52f0279be23e671ae7eb7d2e2ddc1f1dCAS | 11486282PubMed |

Liebler-Tenorio, E. M., and Pabst, R. (2006). MALT structure and function in farm animals. Veterinary Research 37, 257–280.
MALT structure and function in farm animals.Crossref | GoogleScholarGoogle Scholar | 16611547PubMed |

Lucero, J. E., Rosenberg, G. H., and Miller, R. D. (1998). Marsupial light chains: complexity and conservation of lambda in the opossum Monodelphis domestica. Journal of Immunology 161, 6724–6732.
| 1:CAS:528:DyaK1cXotFWqt78%3D&md5=925347c2da1d13d90cfed14ac4b2e0c3CAS |

Marx, J. J., Burrell, R., and Fisher, S. Q. (1971). Study of afferent and efferent limbs of immune response in opossums. Journal of Immunology 106, 1043–1049.

McKenzie, L. M., and Cooper, D. W. (1994). Low MHC Class II variability in a marsupial. Reproduction, Fertility and Development 6, 721–726.
Low MHC Class II variability in a marsupial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlvVKrs7k%3D&md5=477f995ad065cd282656a5e507e1f243CAS |

Meyer-Lucht, Y, Otten, C, Puttker, T, and Sommer, S (2008). Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials. BMC Genetics 9, 39.
Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials.Crossref | GoogleScholarGoogle Scholar | 18534008PubMed |

Mier, J. W., and Gallo, R. C. (1980). Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media. Proceedings of the National Academy of Sciences of the United States of America 77, 6134–6138.
Purification and some characteristics of human T-cell growth factor from phytohemagglutinin-stimulated lymphocyte-conditioned media.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlyqsA%3D%3D&md5=dc01c05327dc288cf581192e47eb3194CAS | 6969402PubMed |

Mikkelsen, T. S., Wakefield, M. J., Aken, B., Amemiya, C. T., Chang, J. L., et al (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177.
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVGrsLw%3D&md5=e57e19dec553edd426b7ae91cedf8b04CAS | 17495919PubMed |

Miller, J. F. A. P., Block, M., Rowlands, D. T., and Kind, P. (1965). Effect of thymectomy on haematopoietic organs of the opossum “embryo”. Proceedings of the Society for Experimental Biology and Medical Science 118, 916–921.
| 1:STN:280:DyaF2M%2FosFaltw%3D%3D&md5=1ac13df5faaa52855255f5a5d63642bbCAS |

Miller, R. D., Grabe, H., and Rosenberg, G. H. (1998). V(H) repertoire of a marsupial (Monodelphis domestica). Journal of Immunology 160, 259–265.
| 1:CAS:528:DyaK1cXhtFSqtg%3D%3D&md5=5e35e5e0bcea596e3eb10c81617893b5CAS |

Miller, R. D., Bergemann, E. R., and Rosenberg, G. H. (1999). Marsupial light chains: IGK with four V families in the opossum Monodelphis domestica. Immunogenetics 50, 329–335.
Marsupial light chains: IGK with four V families in the opossum Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXnsFCrt74%3D&md5=390ce2360732e6bd747d2c248477f36aCAS | 10630297PubMed |

Miska, K. B., and Miller, R. D. (1999). Marsupial MHC Class I: classical sequences from the opossum, Monodelphis domestica. Immunogenetics 50, 89–93.
Marsupial MHC Class I: classical sequences from the opossum, Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmt12it70%3D&md5=1f87ff44eddffd07f9fa4856d6588c2bCAS | 10541813PubMed |

Miska, K. B., Wright, A. M., Lundgren, R., Sasaki-McClees, R., Osterman, A., Gale, J. M., and Miller, R. D. (2004). Analysis of a marsupial MHC region containing two recently duplicated Class I loci. Mammalian Genome 15, 851–864.
Analysis of a marsupial MHC region containing two recently duplicated Class I loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Glu7o%3D&md5=7d14ff65091218592476759b80e45b0fCAS | 15520888PubMed |

Montali, R. J., Bush, M., Cromie, R., Holland, S. M., Maslow, J. N., Worley, M., Witebsky, F. G., and Phillips, T. M. (1998). Primary Mycobacterium avium complex infections correlate with lowered cellular immune reactivity in Matschie’s tree kangaroos (Dendrolagus matschiei). The Journal of Infectious Diseases 178, 1719–1725.
Primary Mycobacterium avium complex infections correlate with lowered cellular immune reactivity in Matschie’s tree kangaroos (Dendrolagus matschiei).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FjsVKmug%3D%3D&md5=22303e3827782f4d574ac10967fa547aCAS | 9815225PubMed |

Moriarty, K. (1973). A possible deficiency of cell-mediated immunity in the opossum, Trichosurus vulpecula, in relation to tuberculosis. New Zealand Veterinary Journal 21, 167–169.
A possible deficiency of cell-mediated immunity in the opossum, Trichosurus vulpecula, in relation to tuberculosis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2FlslCjtg%3D%3D&md5=3dcb7b3de97854ba00dea4ccd3ad5406CAS | 4519924PubMed |

Moriarty, K. M., and Thomas, M. J. (1986). Absence of lymphokine-enhanced macrophage migration in vitro in the Australian brush-tailed opossum, Trichosurus vulpecula Veterinary Immunology and Immunopathology 13, 365–370.
Absence of lymphokine-enhanced macrophage migration in vitro in the Australian brush-tailed opossum, Trichosurus vulpecula Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s7ltFSmtQ%3D%3D&md5=d4a5cabd7244680dfdf5026af7953e06CAS | 3548027PubMed |

Morris, K., Austin, J. J., and Belov, K. (2013). Low MHC diversity in the Tasmanian devil pre-dates European settlement and may explain susceptibility to disease epidemics. Biology Letters 9, 1–5.
Low MHC diversity in the Tasmanian devil pre-dates European settlement and may explain susceptibility to disease epidemics.Crossref | GoogleScholarGoogle Scholar |

Murchison, E. P., Tovar, C., Hsu, A., Bender, H. S., Kheradpour, P., et al (2010). The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327, 84–87.
The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhs1WksrbE&md5=ad835554063ee5a6615a3117a01001d6CAS | 20044575PubMed |

Murchison, E. P., Schulz-Trieglaff, O. B., Ning, Z. M., Alexandrov, L. B., Bauer, M. J., et al (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791.
Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtV2qsLs%3D&md5=c351ff9ccc5822f55e87625f19742ce1CAS | 22341448PubMed |

Nishikawa, K., and Takagi, T. (1988). Comparative immunobiology of the palatine tonsil Acta Oto-Laryngologica 105, 43–47.
Comparative immunobiology of the palatine tonsilCrossref | GoogleScholarGoogle Scholar |

O’hUigin, C, Sultmann, H, Tichy, H, and Murray, B.W. (1998). Isolation of MHC Class II DMA and DMB cDNA sequences in a marsupial: the gray short-tailed opossum (Monodelphis domestica). Journal of Molecular Evolution 47, 578–585.
Isolation of MHC Class II DMA and DMB cDNA sequences in a marsupial: the gray short-tailed opossum (Monodelphis domestica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFWhsbo%3D&md5=1dc433d67ec783cc834492a87fdc2c28CAS | 9797408PubMed |

Old, J. M., and Deane, E. M. (2000). Development of the immune system and immunological protection in marsupial pouch young. Developmental and Comparative Immunology 24, 445–454.
Development of the immune system and immunological protection in marsupial pouch young.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3kslWhtw%3D%3D&md5=15face296d24e1aba9bc60f8e6679570CAS | 10785270PubMed |

Old, J. M., and Deane, E. M. (2001). Histology and immunohistochemistry of the gut-associated lymphoid tissue of the eastern grey kangaroo, Macropus giganteus. Journal of Anatomy 199, 657–662.
Histology and immunohistochemistry of the gut-associated lymphoid tissue of the eastern grey kangaroo, Macropus giganteus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fmt1ersQ%3D%3D&md5=5b05ae3244a31bb4d1cc80e3a919b955CAS | 11787819PubMed |

Old, J. M., and Deane, E. M. (2002a). The gut-associated lymphoid tissues of the northern brown bandicoot (Isoodon macrourus). Developmental and Comparative Immunology 26, 841–848.
The gut-associated lymphoid tissues of the northern brown bandicoot (Isoodon macrourus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnsF2lurg%3D&md5=f1ad7eaa31d6c29e2fe1822cf41f9fe4CAS | 12377223PubMed |

Old, J. M., and Deane, E. M. (2002b). Immunohistochemistry of the lymphoid tissues of the tammar wallaby, Macropus eugenii. Journal of Anatomy 201, 257–266.
Immunohistochemistry of the lymphoid tissues of the tammar wallaby, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 12363276PubMed |

Old, J. M., and Deane, E. M. (2003). The detection of mature T- and B-cells during development of the lymphoid tissues of the tammar wallaby (Macropus eugenii). Journal of Anatomy 203, 123–131.
The detection of mature T- and B-cells during development of the lymphoid tissues of the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3szlvFCltA%3D%3D&md5=82d552434d5acee7ec9b89cb09e5a629CAS | 12892411PubMed |

Old, J. M., Deane, E. M., and Harrison, G. A. (2001). Molecular characterisation of the tammar wallaby (Macropus eugenii) CD3 epsilon chain cDNA. Molecular Immunology 38, 359–364.
Molecular characterisation of the tammar wallaby (Macropus eugenii) CD3 epsilon chain cDNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXnvVyiu74%3D&md5=8be70755930a366ae60a2b501f4134a7CAS | 11684291PubMed |

Old, J. M., Selwood, L, and Deane, E. M. (2003a). A histological investigation of the lymphoid and immunohaematopoietic tissues of the adult stripe-faced dunnart (Sminthopsis macroura). Cells, Tissues, Organs 173, 115–121.
A histological investigation of the lymphoid and immunohaematopoietic tissues of the adult stripe-faced dunnart (Sminthopsis macroura).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7jsVaqtg%3D%3D&md5=1f78b2946c26cddd84ca691f3a085d2bCAS | 12649589PubMed |

Old, J. M., Selwood, L, and Deane, E. M. (2003b). Development of the lymphoid tissues of the stripe-faced dunnart (Sminthopsis macroura). Cells, Tissues, Organs 175, 192–201.
Development of the lymphoid tissues of the stripe-faced dunnart (Sminthopsis macroura).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FgvFCqsw%3D%3D&md5=9ada3916fdf2cac3b44005f24dad0174CAS | 14707400PubMed |

Old, J. M., Selwood, L., and Deane, E. M. (2004a). The appearance and distribution of mature T and B cells in the developing immune tissues of the stripe-faced dunnart (Sminthopsis macroura). Journal of Anatomy 205, 25–33.
The appearance and distribution of mature T and B cells in the developing immune tissues of the stripe-faced dunnart (Sminthopsis macroura).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czltlCrsQ%3D%3D&md5=d181b190b86b07c4c36f3208b1035810CAS | 15255959PubMed |

Old, J. M., Selwood, L., and Deane, E. M. (2004b). A developmental investigation of the liver, bone marrow and spleen of the stripe-faced dunnart (Sminthopsis macroura). Developmental and Comparative Immunology 28, 347–355.
A developmental investigation of the liver, bone marrow and spleen of the stripe-faced dunnart (Sminthopsis macroura).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2Fgt1ektQ%3D%3D&md5=26c763a4aaf238f70c489ea22924bed2CAS | 14698220PubMed |

Old, J. M., Carman, R. L., Fry, G., and Deane, E. M. (2006). The immune tissues of the endangered red-tailed phascogale (Phascogale calura). Journal of Anatomy 208, 381–387.
The immune tissues of the endangered red-tailed phascogale (Phascogale calura).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD287ksFKntA%3D%3D&md5=f9a72726b751b3d8985e954a738cdb1aCAS | 16533320PubMed |

Paddle, R. (2012). The thylacine’s last straw: epidemic disease in a recent mammalian extinction Australian Zoologist , .
The thylacine’s last straw: epidemic disease in a recent mammalian extinctionCrossref | GoogleScholarGoogle Scholar |

Papadimitriou, J. M., and Ashman, R. B. (1972). A poxvirus in a marsupial papilloma. Journal of General Virology 16, 87–89.
A poxvirus in a marsupial papilloma.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE383ltVehtA%3D%3D&md5=00e8d5068c14658854cd0e71f1f0e65bCAS | 5049081PubMed |

Parra Z. E. Baker M. L. Schwarz R. S. Deakin J. E. Lindblad-Toh K Miller R. D. (2007 ). Discovery of a new T cell receptor in marsupials. Proceedings of the National Academy of Sciences USA 104 9776 9781

Parra, Z. E., Baker, M. L., Hathaway, J., Lopez, A. M., Trujillo, J., Sharp, A., and Miller, R. D. (2008). Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica BMC Genomics 9, 111.
Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica Crossref | GoogleScholarGoogle Scholar | 18312668PubMed |

Parra, Z. E., Baker, M. L., Lopez, A. M., Trujillo, J., Volpe, J. M., and Miller, R. D. (2009). TCRmu recombination and transcription relative to the conventional TCR during postnatal development in opossums. Journal of Immunology 182, 154–163.
| 1:CAS:528:DC%2BD1cXhsFCis7nI&md5=b30c3fcd18c023440b1dcbb42a188842CAS |

Parra, Z.E., Ohta, Y., Criscitiello, M.F., Flajnik, M.F., and Miller, R. D. (2010). The dynamic TCRδ: TCRδ chains in the amphibian Xenopus tropicalis utilize antibody-like V genes. European Journal of Immunology 40, 2319–2329.
The dynamic TCRδ: TCRδ chains in the amphibian Xenopus tropicalis utilize antibody-like V genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpsF2rsbg%3D&md5=eb64c414931809f19aaff1113fab9a07CAS | 20486124PubMed |

Parra, Z. E., Lillie, M., and Miller, R. D. (2012a). A model for the evolution of the mammalian T cell receptor α/δ and μ loci based on evidence from the duckbill platypus. Molecular Biology and Evolution 29, 3205–3214.
A model for the evolution of the mammalian T cell receptor α/δ and μ loci based on evidence from the duckbill platypus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtb3M&md5=92cf243c48cd3aa5814d9eb23bd57a9eCAS | 22593227PubMed |

Parra, Z. E., Mitchell, K., Dalloul, R. A., and Miller, R. D. (2012b). A second TCRδ locus in Galliformes uses antibody-like V domains: insight into the evolution of TCRd and TCRm genes in tetrapods. Journal of Immunology 188, 3912–3919.
A second TCRδ locus in Galliformes uses antibody-like V domains: insight into the evolution of TCRd and TCRm genes in tetrapods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XltFKgsbs%3D&md5=9f1bc1d9d8c4f8281eb1c2c6cbc7e5ccCAS |

Paulesu, L., Jantra, S., Ietta, F., Brizzi, R., and Bigliardi, E. (2008). Interleukin-1 in reproductive strategies. Evolution & Development 10, 778–788.
Interleukin-1 in reproductive strategies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFCrs73O&md5=9acfef0864c6d1750557e97dd906d62aCAS |

Poskitt, D. C., Barnett, J., Duffey, K., Kimpton, W. G., and Muller, H. K. (1984a). Involution of the thymus in marsupial mice. Developmental and Comparative Immunology 8, 483–488.
Involution of the thymus in marsupial mice.Crossref | GoogleScholarGoogle Scholar |

Poskitt, D. C., Barnett, J., Duffey, K., Lee, A. K., Kimpton, W. G., and Muller, H. K. (1984b). Stress-related involution of lymphoid tissues in Australian marsupial mice. Immunobiology 166, 286–295.
Stress-related involution of lymphoid tissues in Australian marsupial mice.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2c3jvVWkug%3D%3D&md5=b25bc6c691ca4700453afcee5ed8ecfeCAS | 6735432PubMed |

Poskitt, D. C., Duffey, K., Barnett, J., Kimpton, W. G., and Muller, H. K. (1984c). The gut-associated lymphoid system of two species of Australian marsupial mice, Antechinus swainsonii and Antechinus stuartii. Distribution, frequency and structure of Peyer’s patches and lymphoid follicles in the small and large intestine. The Australian Journal of Experimental Biology and Medical Science 62, 81–88.
The gut-associated lymphoid system of two species of Australian marsupial mice, Antechinus swainsonii and Antechinus stuartii. Distribution, frequency and structure of Peyer’s patches and lymphoid follicles in the small and large intestine.Crossref | GoogleScholarGoogle Scholar | 6743144PubMed |

Renfree, M. B., Papenfuss, A. T., Deakin, J. E., Lindsay, J., Heider, T., et al (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology 12, 1–25.
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar |

Schuurman, H., Kuper, C. F., and Kendall, M. D. (1997). Thymic microenvironment at the light microscopic level. Microscopy Research and Technique 38, 216–226.
Thymic microenvironment at the light microscopic level.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2svgslGrtw%3D%3D&md5=cc5815e336f637ebb059bf2386a06444CAS | 9264334PubMed |

Selwood, L., and Coulson, G. (2006). Marsupials as models for research. Australian Journal of Zoology 54, 137–138.
Marsupials as models for research.Crossref | GoogleScholarGoogle Scholar |

Siddle, H. V., Deakin, J. E., Baker, M. L., Miller, R. D., and Belov, K. (2006). Isolation of major histocompatibility complex Class I genes from the tammar wallaby (Macropus eugenii). Immunogenetics 58, 487–493.
Isolation of major histocompatibility complex Class I genes from the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XltFyit7Y%3D&md5=03a1aad4b1c7b00ba688d88465a3331aCAS | 16568263PubMed |

Siddle, H. V., Kreiss, A., Eldridge, M. D., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M., and Belov, K. (2007a). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences USA 104, 16221–16226.
| 1:CAS:528:DC%2BD2sXhtF2gsr7I&md5=924b0306c66f6fb03b39689bbfd8c611CAS |

Siddle, H. V., Sanderson, C., and Belov, K. (2007b). Characterization of major histocompatibility complex Class I and Class II genes from the Tasmanian devil (Sarcophilus harrisii). Immunogenetics 59, 753–760.
Characterization of major histocompatibility complex Class I and Class II genes from the Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVCnsrjO&md5=ce73ddbe63e5d0522c42a42bbd75394cCAS | 17673996PubMed |

Siddle, H. V., Deakin, J. E., Coggill, P., Hart, E., Cheng, Y., Wong, E. S., Harrow, J., Beck, S., and Belov, K. (2009). MHC-linked and un-linked Class I genes in the wallaby. BMC Genomics 10, 1–15.
MHC-linked and un-linked Class I genes in the wallaby.Crossref | GoogleScholarGoogle Scholar |

Siddle, H. V., Deakin, J. E., Coggill, P., Whilming, L., Harrow, J., Kaufman, J., Beck, S., and Belov, K. (2011). The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics 12, 1–15.
The tammar wallaby major histocompatibility complex shows evidence of past genomic instability.Crossref | GoogleScholarGoogle Scholar |

Sitnikova, T., and Su, C. (1998). Coevolution of immunoglobulin heavy- and light-chain variable-region gene families. Molecular Biology and Evolution 15, 617–625.
Coevolution of immunoglobulin heavy- and light-chain variable-region gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsFShsbg%3D&md5=668bcb9f1fd31c4e7eb8a1d7cd3b4ad8CAS | 9615443PubMed |

Slade, R. W., Hale, P. T., Francis, D. I., Graves, J. A., and Sturm, R. A. (1994). The marsupial MHC: the tammar wallaby, Macropus eugenii, contains an expressed DNA-like gene on chromosome 1. Journal of Molecular Evolution 38, 496–505.
The marsupial MHC: the tammar wallaby, Macropus eugenii, contains an expressed DNA-like gene on chromosome 1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFWisrc%3D&md5=f888423b0ee8f4127e4632d7eb408f7aCAS | 8028029PubMed |

Stanley, N. F., Yadav, M., Waring, H., and Eadie, M. (1972). The effect of thymectomy on response to various antigens of a marsupial Setonix brachyurus (Quokka). The Australian Journal of Experimental Biology and Medical Science 50, 689–702.
The effect of thymectomy on response to various antigens of a marsupial Setonix brachyurus (Quokka).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s7ksVegtQ%3D%3D&md5=5d357f0e19f565ad6ce6da190b125969CAS | 4656785PubMed |

Stewart, N. J., Bettiol, S. S., Kreiss, A., Fox, N., and Woods, G. M. (2008). Mitogen-induced responses in lymphocytes from platypus, the Tasmanian devil and the eastern barred bandicoot. Australian Veterinary Journal 86, 408–413.
Mitogen-induced responses in lymphocytes from platypus, the Tasmanian devil and the eastern barred bandicoot.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1cnjs1SrsA%3D%3D&md5=9619985d60ac18c54e5546c1f6087021CAS | 18826514PubMed |

Stone, W. H., Bruun, D. A., and Manis, G. S. (1996). The immunobiology of the marsupial Monodelphis domestica. In ‘Modulators of Immune Responses, the Evolutionary Trail. Vol. 11’. (Eds J. S. Stolen, T. C. Fletcher and J. C. Bayne.) pp. 149–165. (SOS Publications: Fairhaven, NJ.)

Stone, W. H., Bruun, D. A., Fuqua, C., Glass, L. C., Reeves, A., Holste, S., and Figueroa, F. (1999). Identification and sequence analysis of an MHC Class II B gene in a marsupial (Monodelphis domestica). Immunogenetics 49, 461–463.
Identification and sequence analysis of an MHC Class II B gene in a marsupial (Monodelphis domestica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVKmtrk%3D&md5=57c20fb3dd1caf632bdebffd5dc0b1baCAS | 10199923PubMed |

Symington, J (1898). The thymus gland in the marsupialia. Journal of Anatomy 32, 278–291.
| 1:STN:280:DC%2BD2s%2FosFemtA%3D%3D&md5=0c89cf88e72988699b3e3952d59e20a3CAS |

Turner, K. J., Alpers, M. P., and Wight, M. (1972). Delayed hypersensitivity in the marsupial Setonix brachyurus (quokka). Journal of Immunology 108, 1675–1680.
| 1:CAS:528:DyaE38XktFyjt70%3D&md5=4f686bfbf9d6895ac40c3b089214c62eCAS |

Tyndale-Biscoe, C. H., and Renfree, M. (1987). ‘Reproductive Physiology of Marsupials.’ (Cambridge University Press: Cambridge.)

van der Kraan, L. E., Wong, E. S., Lo, N., Ujvari, B., and Belov, K. (2013). Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii). Immunogenetics 65, 25–35.
Identification of natural killer cell receptor genes in the genome of the marsupial Tasmanian devil (Sarcophilus harrisii).Crossref | GoogleScholarGoogle Scholar | 23007952PubMed |

Wang, X., and Miller, R. D. (2012). Recombination, transcription and diversity of a partially germ-line joined VH in a mammal. Immunogenetics 64, 713–717.
Recombination, transcription and diversity of a partially germ-line joined VH in a mammal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1alsLrP&md5=e5399fe6382f4be26fa3507b0d75a37dCAS | 22710822PubMed |

Wang, X., Olp, J.J., and Miller, R. D. (2009). On the genomics of immunoglobulins in the gray, short-tailed opossum Monodelphis domestica. Immunogenetics 61, 581–596.
On the genomics of immunoglobulins in the gray, short-tailed opossum Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpsVaqsbw%3D&md5=7f9db6ff071d358a3b34ebe7634a6625CAS | 19609519PubMed |

Wang, J. H., Wong, E. S. W., Whitley, J. C., Li, J., Stringer, J. M., Short, K. R., Renfree, M. B., Belov, K., and Cocks, B. G. (2011a). Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE 6, e24030.
Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wrt77N&md5=40e56e01e6cf0fb76f8e4854b145e63eCAS |

Wang, X., Parra, Z.E., and Miller, R. D. (2011b). Platypus TCRμ provides insight into the origins and evolution of a uniquely mammalian TCR locus Journal of Immunology 187, 5246–5254.
Platypus TCRμ provides insight into the origins and evolution of a uniquely mammalian TCR locusCrossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsVSitb%2FK&md5=72ebab6adf6d0a3e4e73f9189c244e4eCAS |

Wang, X., Parra, Z.E., and Miller, R. D. (2012a). A VpreB3 homologue from a marsupial, the gray short-tailed opossum, Monodelphis domestica. Immunogenetics 64, 647–652.
A VpreB3 homologue from a marsupial, the gray short-tailed opossum, Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtVegtLbF&md5=45e05d11a44de895a5092155999a4d5fCAS | 22684248PubMed |

Wang, X., Sharp, A. R., and Miller, R. D. (2012b). Early postnatal B cell ontogeny and antibody repertoire maturation in the opossum, Monodelphis domestica PLoS ONE 7, 1–10.
Early postnatal B cell ontogeny and antibody repertoire maturation in the opossum, Monodelphis domestica Crossref | GoogleScholarGoogle Scholar |

Wedlock, D. N., Aldwell, F. E., and Buddle, B. M. (1996). Molecular cloning and characterization of tumor necrosis factor alpha (TNF-alpha) from the Australian common brushtail possum, Trichosurus vulpecula. Immunology and Cell Biology 74, 151–158.
Molecular cloning and characterization of tumor necrosis factor alpha (TNF-alpha) from the Australian common brushtail possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjsVekurw%3D&md5=8211f90e18abb50b162e90fdc1adee55CAS | 8724002PubMed |

Wedlock, D. N., Aldwell, F. E., and Buddle, B. M. (1998). Nucleotide sequence of a marsupial interleukin-10 cDNA from the Australian brushtail possum (Trichosurus vulpecula). DNA Sequence 9, 239–244.
| 1:CAS:528:DC%2BD3cXmtlegu70%3D&md5=1868c184fec70c7b1ae19ec9e2049305CAS | 10520755PubMed |

Wedlock, D. N., Goh, L. P., McCarthy, A. R., Midwinter, R. G., Parlane, N. A., and Buddle, B. M. (1999a). Physiological effects and adjuvanticity of recombinant brushtail possum TNF-alpha. Immunology and Cell Biology 77, 28–33.
Physiological effects and adjuvanticity of recombinant brushtail possum TNF-alpha.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhsl2it78%3D&md5=edb327dd5aa8c934de6854c0be407d88CAS | 10101683PubMed |

Wedlock, D. N., Goh, L. P., Parlane, N. A., and Buddle, B. M. (1999b). Molecular cloning and physiological effects of brushtail possum interleukin-1 beta. Veterinary Immunology and Immunopathology 67, 359–372.
Molecular cloning and physiological effects of brushtail possum interleukin-1 beta.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvFGhtbg%3D&md5=be4a82c62984ac2dae15b75ef510a1e2CAS | 10206203PubMed |

Wilkinson, R., Kotlarski, I., and Barton, M. (1992a). Koala lymphoid cells: analysis of antigen-specific responses. Veterinary Immunology and Immunopathology 33, 237–247.
Koala lymphoid cells: analysis of antigen-specific responses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zotlyjtg%3D%3D&md5=507ee222f7666afacfffc9edddd2df09CAS | 1387489PubMed |

Wilkinson, R., Kotlarski, I., Barton, M., and Phillips, P. (1992b). Isolation of koala lymphoid cells and their in vitro responses to mitogens. Veterinary Immunology and Immunopathology 31, 21–33.
Isolation of koala lymphoid cells and their in vitro responses to mitogens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383jsl2ltQ%3D%3D&md5=d07eb029f41d30db804de38079ac21e8CAS | 1570681PubMed |

Wong, E., Young, L. J., Papenfuss, A. T., and Belov, K. (2006). In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Research 2, .
| 17094811PubMed |

Wong, E., Papenfuss, A. T., Heger, A., Hsu, A., Ponting, C. P., Miller, R. D., Fenelon, J., Renfree, M. B., Gibbs, R. A., and Belov, K. (2011a). Transcriptomic analysis supports similar functional roles for the two thymuses of the Tammar wallaby. BMC Genomics 12, 1–12.
Transcriptomic analysis supports similar functional roles for the two thymuses of the Tammar wallaby.Crossref | GoogleScholarGoogle Scholar |

Wong, E. S. W., Papenfuss, A. T., and Belov, K. (2011b). Immunome database for marsupials and monotremes. BMC Immunology 12, 48.
Immunome database for marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtF2gurjN&md5=b0986214adaaea97a741fa111b4997fbCAS |

Yadav, M. (1973). The presence of the cervical and thoracic thymus lobes in marsupials. Australian Journal of Zoology 21, 285–301.
The presence of the cervical and thoracic thymus lobes in marsupials.Crossref | GoogleScholarGoogle Scholar |

Yadav, M, and Papadimitriou, J. M. (1969). III. Ultrastructure of the neonatal thymus of a marsupial, Setonix brachyurus. Australian Journal of Experimental Biology and Medical Science 47, 653–668.
III. Ultrastructure of the neonatal thymus of a marsupial, Setonix brachyurus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c7jvVSmtQ%3D%3D&md5=c4d184cacf6dc11ca2a589bf73c8e830CAS | 5377806PubMed |

Yadav, M., Stanley, N. F., and Waring, H. (1972a). The thymus glands of a marsupial, Setonix brachyurus (quokka), and their role in immune responses. Effect of thymectomy on somatic growth and blood leucocytes. The Australian Journal of Experimental Biology and Medical Science 50, 357–364.
The thymus glands of a marsupial, Setonix brachyurus (quokka), and their role in immune responses. Effect of thymectomy on somatic growth and blood leucocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s7ivVahsw%3D%3D&md5=9e65b65e9e61283e046954d30b62c265CAS | 4654392PubMed |

Yadav, M., Stanley, N. F., and Waring, H. (1972b). The thymus glands of a marsupial, Setonix brachyurus (quokka), and their role in immune responses. Structure and growth of the thymus glands. The Australian Journal of Experimental Biology and Medical Science 50, 347–356.
The thymus glands of a marsupial, Setonix brachyurus (quokka), and their role in immune responses. Structure and growth of the thymus glands.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3s7ivVahsg%3D%3D&md5=cda064858405a938b8d13d02d19dc7dbCAS | 4654391PubMed |

Yadav, M., Waring, H., and Stanley, N. (1974). Effect of thymectomy on skin allograft survival in a macropod marsupial Setonix brachyurus. Transplantation 17, 30–36.
Effect of thymectomy on skin allograft survival in a macropod marsupial Setonix brachyurus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2Fms12mtw%3D%3D&md5=2e5c56ab2d66eb0aa419b9f1c178a1e4CAS | 4588155PubMed |

Young, L. (2011). Expressed sequence identification and characterisation of the cDNA for Interleukin-4 from the mitogen-stimulated tissue of a marsupial, Macropus eugenii. Veterinary Immunology and Immunopathology 140, 335–340.
Expressed sequence identification and characterisation of the cDNA for Interleukin-4 from the mitogen-stimulated tissue of a marsupial, Macropus eugenii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjs1Wlur8%3D&md5=e06a095003499145cc12d4a3b7e562a6CAS | 21196053PubMed |

Young, L. J. (2012). Phenotyping of leukocytes in the lungs of potoroid marsupials. Comparative Clinical Pathology 21, 9–14.
Phenotyping of leukocytes in the lungs of potoroid marsupials.Crossref | GoogleScholarGoogle Scholar |

Young, L. J., and Deane, E. M. (2007). Culture and stimulation of tammar wallaby lymphocytes. Veterinary Research Communications 31, 685–701.
Culture and stimulation of tammar wallaby lymphocytes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2s3lsFyltQ%3D%3D&md5=7e69cec5bc284b14d4dc6d12ea335e77CAS | 17245559PubMed |

Young, L. J., and Harrison, G. A. (2010). Molecular characterisation of Interleukin-1 Beta in the Tammar wallaby (Macropus eugenii). The Journal of Veterinary Medical Science 72, 1521–1526.
Molecular characterisation of Interleukin-1 Beta in the Tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXkt1Kh&md5=2ab12ed3adc7a74e362c9d9416c91627CAS | 20628231PubMed |

Young, L. J., McFarlane, R., Slender, A. L., and Deane, E. M. (2003). Histological and immunohistological investigation of the lymphoid tissue in normal and mycobacteria-affected specimens of the rufous hare-wallaby (Lagorchestes hirsutus) Journal of Anatomy 202, 315–325.
Histological and immunohistological investigation of the lymphoid tissue in normal and mycobacteria-affected specimens of the rufous hare-wallaby (Lagorchestes hirsutus)Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7ptlOgtw%3D%3D&md5=0917b5b743018309a1746f17580c673dCAS | 12713272PubMed |

Young, L. J., Cross, M. L., Duckworth, J. A., Flenady, S., and Belov, K. (2012). Molecular identification of Interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula Developmental and Comparative Immunology 36, 236–240.
Molecular identification of Interleukin-2 in the lymphoid tissues of the common brushtail possum, Trichosurus vulpecula Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlOksb7L&md5=5e2a96eaeff67d306b1242f6e16c5ca2CAS | 21683733PubMed |

Zelus, D., Robinson-Rechavi, M., Delacre, M., Auriault, C., and Laudet, V. (2000). Fast evolution of Interleukin-2 in mammals and positive selection in ruminants. Journal of Molecular Evolution 51, 234–244.
| 1:CAS:528:DC%2BD3cXnslGltL0%3D&md5=e9c572380a817324bc8879ffaa8549a8CAS | 11029068PubMed |

Zhu, J., and Paul, W. E. (2008). CD4 T cells: fates, functions, and faults. Blood 112, 1557–1569.
CD4 T cells: fates, functions, and faults.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVylurbK&md5=1c4b836b65c1c05d2783fe1c38ee427eCAS | 18725574PubMed |

Zhu, J., Yamane, H., and Paul, W. E. (2010). Differentiation of Effector CD4 T cell populations. Annual Review of Immunology 28, 445–489.
Differentiation of Effector CD4 T cell populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlsVSmsL4%3D&md5=928b47ccbb68f1dda2ae86240c272778CAS | 20192806PubMed |