Inferring population connectivity across the range of the purple-crowned fairy-wren (Malurus coronatus) from mitochondrial DNA and morphology: implications for conservation management
Anja Skroblin A B E , Robert Lanfear A C , Andrew Cockburn A and Sarah Legge B DA Research School of Biology, Australian National University, Canberra, ACT 0200, Australia.
B Australian Wildlife Conservancy, Mornington Wildlife Sanctuary, PMB 925, Derby, WA 6728, Australia.
C National Evolutionary Synthesis Center, Durham, NC 27705-4667, USA.
D School for Environmental Research and North Australian Biodiversity Hub, Charles Darwin University, Casuarina, NT 0909, Australia.
E Corresponding author. Email: anja.skroblin@anu.edu.au
Australian Journal of Zoology 60(3) 199-209 https://doi.org/10.1071/ZO12093
Submitted: 24 January 2012 Accepted: 17 September 2012 Published: 12 October 2012
Abstract
Knowledge of population structure and patterns of connectivity is required to implement effective conservation measures for the purple-crowned fairy-wren (Malurus coronatus), a threatened endemic of northern Australia. This study aimed to identify barriers to dispersal across the distribution of M. coronatus, investigate the impact that the recent declines may have on population connectivity, and propose conservation actions to maintain natural patterns of gene flow. Analysis of mitochondrial DNA sequences from 87 M. coronatus identified two phylogenetic clusters that corresponded with the phenotypically defined western (M. c. coronatus) and eastern (M. c. macgillivrayi) subspecies. The genetic divergence between these subspecies was consistent with isolation by a natural barrier to gene flow, and supports their separate conservation management. Within the declining M. c. coronatus, the lack of genetic divergence and only slight morphological difference between remnant populations indicates that populations were recently linked by gene flow. It is likely that widespread habitat degradation and the recent extirpation of M. c. coronatus from the Ord River will disrupt connectivity between, and dynamics within, remnant populations. To prevent further declines, conservation of M. coronatus must preserve areas of quality habitat and restore connectivity between isolated populations.
Additional keywords: conservation biology, northern Australia, phylogeography, wildlife management.
References
Avise, J. C., Arnold, J., Ball, R. M., Bermingham, E., Lamb, T., Neigel, J. E., Reeb, C. A., and Saunders, N. C. (1987). Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Systematics 18, 489–522.Barrett, G., Silcocks, A., Barry, S., Cunningham, R., and Poulter, R. (2003). ‘The New Atlas of Australian Birds.’ (Royal Australasian Ornithologists Union: Melbourne.)
Berger, J. (1990). Persistence of different-sized populations: an empirical assessment of rapid extinctions in bighorn sheep. Conservation Biology 4, 91–98.
| Persistence of different-sized populations: an empirical assessment of rapid extinctions in bighorn sheep.Crossref | GoogleScholarGoogle Scholar |
Bowman, D. M. J. S., Brown, G. K., Braby, M. F., Brown, J. R., Cook, L. G., Crisp, M. D., Ford, F., Haberle, S., Hughes, J., Isagi, Y., Joseph, L., McBride, J., Nelson, G., and Ladiges, P. Y. (2010). Biogeography of the Australian monsoon tropics. Journal of Biogeography 37, 201–216.
| Biogeography of the Australian monsoon tropics.Crossref | GoogleScholarGoogle Scholar |
Brooker, M., and Brooker, L. (2001). Breeding biology, reproductive success and survival of blue-breasted fairy-wrens in fragmented habitat in the Western Australian wheatbelt. Wildlife Research 28, 205–214.
| Breeding biology, reproductive success and survival of blue-breasted fairy-wrens in fragmented habitat in the Western Australian wheatbelt.Crossref | GoogleScholarGoogle Scholar |
Clement, M., Posada, D., and Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology 9, 1657–1659.
| TCS: a computer program to estimate gene genealogies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXnvV2gtbw%3D&md5=6c2fc40b039e7a3121d6b93d4e16a02fCAS |
Cox, J., and Engstrom, R. T. (2001). Influence of the spatial pattern of conserved lands on the persistence of a large population of red-cockaded woodpeckers. Biological Conservation 100, 137–150.
| Influence of the spatial pattern of conserved lands on the persistence of a large population of red-cockaded woodpeckers.Crossref | GoogleScholarGoogle Scholar |
Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., and Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290–295.
| Considering evolutionary processes in conservation biology.Crossref | GoogleScholarGoogle Scholar |
DEWHA (2009). Malurus coronatus coronatus. In ‘Species Profile and Threats Database’. (Department of the Environment, Water, Heritage and the Arts: Canberra.)
Diniz-Filho, J. A. F., de Campos Telles, M. P., Bonatto, S. L., Eizirik, E., de Freitas, T. R. O., de Marco, P., Santos, F. R., Sole-Cava, A., and Soares, T. N. (2008). Mapping the evolutionary twilight zone: molecular markers, populations and geography. Journal of Biogeography 35, 753–763.
| Mapping the evolutionary twilight zone: molecular markers, populations and geography.Crossref | GoogleScholarGoogle Scholar |
Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Heled, J., Kearse, M., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., and Wilson, A. (2010). Geneious v5.1. Available from http://www.geneious.com
Eldridge, M. D. B., Potter, S., and Cooper, S. J. B. (2012). Biogeographic barriers in north-western Australia: an overview and standardisation of nomenclature. Australian Journal of Zoology 59, 270–272.
| Biogeographic barriers in north-western Australia: an overview and standardisation of nomenclature.Crossref | GoogleScholarGoogle Scholar |
Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479–491.
| 1:CAS:528:DyaK38XlsVCntro%3D&md5=54b11e3e59d6dd0ba51a273d497b7c25CAS |
Fahrig, L., and Merriam, G. (1985). Habitat patch connectivity and population survival. Ecology 66, 1762–1768.
| Habitat patch connectivity and population survival.Crossref | GoogleScholarGoogle Scholar |
Fahrig, L., and Merriam, G. (1994). Conservation of fragmented populations. Conservation Biology 8, 50–59.
| Conservation of fragmented populations.Crossref | GoogleScholarGoogle Scholar |
Fedy, B. C., Martin, K., Ritland, C., and Young, J. (2008). Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Molecular Ecology 17, 1905–1917.
| Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1c3ltF2itw%3D%3D&md5=314b1dd1dc76d3df1053f1459583c18fCAS |
Ford, J. (1978). Geographical isolation and morphological and habitat differentiation between birds of the Kimberley and the Northern Territory. Emu 78, 25–35.
| Geographical isolation and morphological and habitat differentiation between birds of the Kimberley and the Northern Territory.Crossref | GoogleScholarGoogle Scholar |
Fujita, M. K., McGuire, J. A., Donnellan, S. C., and Moritz, C. (2010). Diversification and persistence at the arid–monsoonal interface: Australia-wide biogeography of the Bynoe’s gecko (Heteronotia binoei; Gekkonidae). Evolution 64, 2293–2314.
| 1:CAS:528:DC%2BC3cXhtFaltL3M&md5=bc9606f7116960269c6feb3d4f67d0a4CAS |
Garnett, S. T., Szabo, J. K., and Dutson, G. (2011). ‘The Action Plan for Australian Birds 2010.’ (CSIRO Publishing: Melbourne.)
Hackett, S. J. (1996). Molecular phylogenetics and biogeography of tanagers in the Genus Ramphocelus (Aves). Molecular Phylogenetics and Evolution 5, 368–382.
| Molecular phylogenetics and biogeography of tanagers in the Genus Ramphocelus (Aves).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVCku74%3D&md5=3bf7abc01a62d5a8598dabd4e71aa7ccCAS |
Halliburton, R. (2004). ‘Introduction to Population Genetics.’ (Pearson Education: Upper Saddle River, NJ.)
Higgins, P. J., Peter, J. M., and Steele, W. K. E. (2001). ‘Handbook of Australian, New Zealand and Antarctic Birds. Volume 5: Tyrant-flycatchers to Chats.’ (Oxford University Press: Melbourne.)
Holsinger, K. E. (2000). Demography and extinction in small populations. In ‘Genetics, Demography and Viability of Fragmented Populations’. (Eds A. G. Young and G. M. Clarke.) pp. 55–74. (Cambridge University Press: Cambridge.)
Howeth, J. G., McGaugh, S. E., and Hendrickson, D. A. (2008). Contrasting demographic and genetic estimates of dispersal in the endangered Coahuilan box turtle: a contemporary approach to conservation. Molecular Ecology 17, 4209–4221.
| Contrasting demographic and genetic estimates of dispersal in the endangered Coahuilan box turtle: a contemporary approach to conservation.Crossref | GoogleScholarGoogle Scholar |
Huelsenbeck, J. P., and Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755.
| MRBAYES: Bayesian inference of phylogeny.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvotV2isw%3D%3D&md5=a4aa0a8b9d4b188e002dfccc62355443CAS |
Joseph, L., and Wilke, T. (2006). Molecular resolution of population history, systematics and historical biogeography of the Australian ringneck parrots Barnardius: are we there yet? Emu 106, 49–62.
| Molecular resolution of population history, systematics and historical biogeography of the Australian ringneck parrots Barnardius: are we there yet?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xit1Wltrg%3D&md5=6a276a432caca7992c90b7eaf1b84634CAS |
Kearns, A. M., Joseph, L., Edwards, S. V., and Double, M. C. (2009). Inferring the phylogeography and evolutionary history of the splendid fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry. Journal of Avian Biology 40, 7–17.
| Inferring the phylogeography and evolutionary history of the splendid fairy-wren Malurus splendens from mitochondrial DNA and spectrophotometry.Crossref | GoogleScholarGoogle Scholar |
Lanfear, R., Calcott, B., Ho, S. Y. W., and Guindon, S. (2012). Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
| Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=53abc083865120448e9137876e8be4deCAS |
Librado, P., and Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.
| DnaSP v5: a software for comprehensive analysis of DNA polymorphism data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtFeqtr8%3D&md5=6b7a4b6fa3ea989ffd7155d05c77f937CAS |
McDonald-Madden, E. V. E., Baxter, P. W. J., and Possingham, H. P. (2008). Subpopulation triage: how to allocate conservation effort among populations. Conservation Biology 22, 656–665.
| Subpopulation triage: how to allocate conservation effort among populations.Crossref | GoogleScholarGoogle Scholar |
Meiri, S., and Dayan, T. (2003). On the validity of Bergmann’s rule. Journal of Biogeography 30, 331–351.
| On the validity of Bergmann’s rule.Crossref | GoogleScholarGoogle Scholar |
Melville, J., Ritchie, E. G., Chapple, S. N. J., Glor, R. E., and Schulte, J. A. (2011). Evolutionary origins and diversification of dragon lizards in Australia’s tropical savannas. Molecular Phylogenetics and Evolution 58, 257–270.
| Evolutionary origins and diversification of dragon lizards in Australia’s tropical savannas.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M3gtV2htg%3D%3D&md5=d52505d3f3738c1b9e35e0552dfc60b3CAS |
Mills, L. S., and Allendorf, F. W. (1996). The one-migrant-per-generation rule in conservation and management. Conservation Biology 10, 1509–1518.
| The one-migrant-per-generation rule in conservation and management.Crossref | GoogleScholarGoogle Scholar |
Montgomery, M. E., Ballou, J. D., Nurthen, R. K., England, P. R., Briscoe, D. A., and Frankham, R. (1997). Minimizing kinship in captive breeding programs. Zoo Biology 16, 377–389.
| Minimizing kinship in captive breeding programs.Crossref | GoogleScholarGoogle Scholar |
Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
| Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=f5d146f2ac78617cd4dca5b6adff21bfCAS |
Moritz, C. (1999). Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130, 217–228.
| Conservation units and translocations: strategies for conserving evolutionary processes.Crossref | GoogleScholarGoogle Scholar |
Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51, 238–254.
| Strategies to protect biological diversity and the evolutionary processes that sustain it.Crossref | GoogleScholarGoogle Scholar |
Moritz, C., Dowling, T. E., and Brown, W. M. (1987). Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics 18, 269–292.
| Evolution of animal mitochondrial DNA: relevance for population biology and systematics.Crossref | GoogleScholarGoogle Scholar |
National Land and Resources Audit (2002). Australian catchment, river and estuary assessment 2002. Natural Heritage Trust, Canberra.
Paetkau, D. (1999). Using genetics to identify intraspecific conservation units: a critique of current methods. Conservation Biology 13, 1507–1509.
| Using genetics to identify intraspecific conservation units: a critique of current methods.Crossref | GoogleScholarGoogle Scholar |
Palsboll, P. J., Berube, M., and Allendorf, F. W. (2007). Identification of management units using population genetic data. Trends in Ecology & Evolution 22, 11–16.
| Identification of management units using population genetic data.Crossref | GoogleScholarGoogle Scholar |
Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
| GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |
Phillimore, A. B., and Owens, I. P. F. (2006). Are subspecies useful in evolutionary and conservation biology? Proceedings of the Royal Society of London. Series B, Biological Sciences 273, 1049–1053.
| Are subspecies useful in evolutionary and conservation biology?Crossref | GoogleScholarGoogle Scholar |
Pimm, S. L., Jones, H. L., and Diamond, J. (1988). On the risk of extinction. American Naturalist 132, 757–785.
| On the risk of extinction.Crossref | GoogleScholarGoogle Scholar |
Potter, S., Eldridge, M.D.B., Taggart, D.A., and Cooper, S.J.B. (2012). Multiple biogeographical barriers identified across the monsoon tropics of northern Australia: phylogeographic analysis of the brachyotis group of rock-wallabies. Molecular Ecology 21, 2254–2269.
Prugh, L. R., Hodges, K. E., Sinclair, A. R. E., and Brashares, J. S. (2008). Effect of habitat area and isolation on fragmented animal populations. Proceedings of the National Academy of Sciences of the United States of America 105, 20770–20775.
| Effect of habitat area and isolation on fragmented animal populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXks1Gktg%3D%3D&md5=ffd6b5ba05c82b551c4642afb7d084dbCAS |
Rambaut, A., and Drummond, A. J. (2007). Tracer v1.4. Available from http://beast.bio.ed.ac.uk/Tracer
Ray, C. (2001). Maintaining genetic diversity despite local extinctions: effects of population scale. Biological Conservation 100, 3–14.
| Maintaining genetic diversity despite local extinctions: effects of population scale.Crossref | GoogleScholarGoogle Scholar |
Remsen, J. V. (2005). Pattern, process, and rigor meet classification. The Auk 122, 403–413.
| Pattern, process, and rigor meet classification.Crossref | GoogleScholarGoogle Scholar |
Rising, J. D., Jackson, D. A., and Fokidis, H. B. (2009). Geographic variation in plumage pattern and colouration of savannah sparrows. The Wilson Journal of Ornithology 121, 253–264.
| Geographic variation in plumage pattern and colouration of savannah sparrows.Crossref | GoogleScholarGoogle Scholar |
Ronquist, F., van der Mark, P., and Huelsenbeck, J. P. (2009). Bayesian phylogenetic analysis using MrBayes. In ‘The Phylogenetic Handbook: a Practical Approach to Phylogenetic Analysis and Hypothesis Testing’. (Eds P. Lemey, M. Salemi and A. Vandanne.) pp. 210–266. (Cambridge University Press: Cambridge.)
Rowley, I. (1993). The purple-crowned fairy-wren Malurus coronatus. I. History, distribution and present status. Emu 93, 220–234.
| The purple-crowned fairy-wren Malurus coronatus. I. History, distribution and present status.Crossref | GoogleScholarGoogle Scholar |
Rowley, I., and Russell, E. (1993). The purple-crowned fairy-wren Malurus coronatus. II. Breeding biology, social organisation, demography and management. Emu 93, 235–250.
| The purple-crowned fairy-wren Malurus coronatus. II. Breeding biology, social organisation, demography and management.Crossref | GoogleScholarGoogle Scholar |
Rubinoff, D., and Holland, B. S. (2005). Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Systematic Biology 54, 952–961.
| Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference.Crossref | GoogleScholarGoogle Scholar |
Schodde, R. (1982). ‘The Fairy-Wrens: A Monograph of the Maluridae.’ (Lansdowne Editions: Melbourne.)
Segelbacher, G., Cushman, S., Epperson, B., Fortin, M.-J., Francois, O., Hardy, O., Holderegger, R., Taberlet, P., Waits, L., and Manel, S. (2010). Applications of landscape genetics in conservation biology: concepts and challenges. Conservation Genetics 11, 375–385.
| Applications of landscape genetics in conservation biology: concepts and challenges.Crossref | GoogleScholarGoogle Scholar |
Selkoe, K. A., and Toonen, R. J. (2006). Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters 9, 615–629.
| Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers.Crossref | GoogleScholarGoogle Scholar |
Skroblin, A., and Legge, S. (2010). The distribution and status of the western subspecies of the purple-crowned fairy-wren (Malurus coronatus coronatus). Emu 110, 339–347.
| The distribution and status of the western subspecies of the purple-crowned fairy-wren (Malurus coronatus coronatus).Crossref | GoogleScholarGoogle Scholar |
Skroblin, A., and Legge, S. (2011). The influence of fine-scale habitat requirements and riparian degradation on the distribution of the purple-crowned fairy-wren (Malurus coronatus coronatus) in northern Australia. Austral Ecology , .
Smith, L. A., and Johnstone, R. E. (1977). Status of the purple-crowned wren (Malurus coronatus) and buff-sided robin (Poecilodryas superciliosa) in Western Australia. Western Australian Naturalist 13, 185–188.
Sorenson, M. D., and Quinn, T. W. (1998). Numts: a challenge for avian systematics and population biology. The Auk 115, 214–221.
| Numts: a challenge for avian systematics and population biology.Crossref | GoogleScholarGoogle Scholar |
Sorenson, M. D., Ast, J. C., Dimcheff, D. E., Yuri, T., and Mindell, D. P. (1999). Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Molecular Phylogenetics and Evolution 12, 105–114.
| Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXjvFWrsLk%3D&md5=6c18168817840e43b2fcc90cabdb6846CAS |
Spielman, D., Brook, B. W., and Frankham, R. (2004). Most species are not driven to extinction before genetic factors impact them. Proceedings of the National Academy of Sciences of the United States of America 101, 15261–15264.
| Most species are not driven to extinction before genetic factors impact them.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpsVSgu7k%3D&md5=fe69d99f621db36aaa4ae112e01fa22cCAS |
Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.
| RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=c7dc98030ebc708484ee158c7fa1accdCAS |
Thrall, P. H., Burdon, J. J., and Murray, B. R. (2000). The metapopulaton paradigm: a fragmented view of conservation biology. In ‘Genetics, Demography and Viabiltiy of Fragmented Populations’. (Eds A. G. Young and G. M. Clarke.) pp. 75–95. (Cambridge University Press: Cambridge.)
Unmack, P. J. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography 28, 1053–1089.
| Biogeography of Australian freshwater fishes.Crossref | GoogleScholarGoogle Scholar |
van Doorn, A. (2007). Ecology and conservation of the purple-crowned fairy-wren (Malurus coronatus coronatus) in the Northern Territory, Australia. Ph.D. Thesis, University of Florida, Gainsville.
Zhang, D., and Hewitt, G. M. (1996). Nuclear integrations: challenges for mitochondrial DNA markers. Trends in Ecology & Evolution 11, 247–251.
| Nuclear integrations: challenges for mitochondrial DNA markers.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFCmsw%3D%3D&md5=1c962cff3a000a617324f9022938003fCAS |
Zink, R. M. (2004). The role of subspecies in obscuring avian biological diversity and misleading conservation policy. Proceedings. Biological Sciences 271, 561–564.
| The role of subspecies in obscuring avian biological diversity and misleading conservation policy.Crossref | GoogleScholarGoogle Scholar |
Zink, R. M. (2005). Natural selection on mitochondrial DNA in Parus and its relevance for phylogeographic studies. Proceedings. Biological Sciences 272, 71–78.
| Natural selection on mitochondrial DNA in Parus and its relevance for phylogeographic studies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXit1yms78%3D&md5=81940b866ee311d392ab7c04e3a37c2aCAS |
Zink, R. M. (2010). Drawbacks with the use of microsatellites in phylogeography: the song sparrow Melospiza melodia as a case study. Journal of Avian Biology 41, 1–7.
| Drawbacks with the use of microsatellites in phylogeography: the song sparrow Melospiza melodia as a case study.Crossref | GoogleScholarGoogle Scholar |
Zink, R. M., and Barrowclough, G. F. (2008). Mitochondrial DNA under siege in avian phylogeography. Molecular Ecology 17, 2107–2121.
| Mitochondrial DNA under siege in avian phylogeography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVeksbk%3D&md5=9c6a8629167e86a3476fbd0695c755a5CAS |
Zink, R. M., Drovetski, S. V., and Rohwer, S. (2006). Selective neutrality of mitochondrial ND2 sequences, phylogeography and species limits in Sitta europaea. Molecular Phylogenetics and Evolution 40, 679–686.
| Selective neutrality of mitochondrial ND2 sequences, phylogeography and species limits in Sitta europaea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotFWktLg%3D&md5=4cb86cb3dcf45041139511fbf9f55000CAS |