Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
REVIEW

Nutritional ecology of essential fatty acids: an evolutionary perspective

A. J. Hulbert A B and Sarah K. Abbott A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, University of Wollongong, Wollongong, NSW 2522, Australia.

B Corresponding author. Email: hulbert@uow.edu.au

Australian Journal of Zoology 59(6) 369-379 https://doi.org/10.1071/ZO11064
Submitted: 25 August 2011  Accepted: 4 November 2011   Published: 20 March 2012

Abstract

There are four types of fatty acids but only two types are essential nutritional requirements for many animals. These are the omega-6 polyunsaturated fatty acids (n-6 PUFA) and the omega-3 polyunsaturated fatty acids (n-3 PUFA) and because they cannot be converted to one another they are separate essential dietary requirements. They are only required in small amounts in the diet and their biological importance stems largely from their role as constituents of membrane lipids. They are synthesised by plants and, as a generalisation, green leaves are the source of n-3 PUFA while seeds are the source of n-6 PUFA in the food chain. While the fatty acid composition of storage fats (triglycerides) is strongly influenced by dietary fatty acid composition, this is not the case for membrane fats. The fatty acid composition of membrane lipids is relatively unresponsive to dietary fatty acid composition, although n-3 PUFA and n-6 PUFA can substitute for each in membrane lipids to some extent. Membrane fatty acid composition appears to be regulated and specific for different species. The role of essential fats in the diet of animals on (1) basal metabolic rate, (2) thermoregulation, (3) maximum longevity, and (4) exercise performance is discussed.


References

Abbott, S. K., Else, P. L., and Hulbert, A. J. (2010). Membrane fatty acid composition of rat skeletal muscle is most responsive to the balance of dietary n-3 and n-6 polyunsaturated fatty acids. The British Journal of Nutrition 103, 522–529.
Membrane fatty acid composition of rat skeletal muscle is most responsive to the balance of dietary n-3 and n-6 polyunsaturated fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtleitbk%3D&md5=80e634befb1ad09985decff8dc25da0dCAS |

Abbott, S. K., Else, P. L., Atkins, T. L., and Hulbert, A. J. (2012). Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance. Biochimica et Biophysica Acta Biomembranes 1818, 1309–1317.
Fatty acid composition of membrane bilayers: importance of diet polyunsaturated fat balance.Crossref | GoogleScholarGoogle Scholar |

Arnold, W., Ruf, T., Frey-Roos, F., and Bruns, U. (2011). Diet-independent remodelling of cellular membranes precedes seasonally changing body temperature in a hibernator. PLoS ONE 6, e18641.
Diet-independent remodelling of cellular membranes precedes seasonally changing body temperature in a hibernator.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2rur8%3D&md5=adf7464bd115ee11c207e1903fc05137CAS |

Augee, M. L., Gooden, B., and Musser, A. (2006). ‘Echidna: Extraordinary Egg-laying Mammal.’ (CSIRO Publishing: Melbourne.)

Ayre, K. J., and Hulbert, A. J. (1996a). Dietary fatty acid profile influences composition of skeletal muscle phospholipids in rats. The Journal of Nutrition 126, 653–662.
| 1:CAS:528:DyaK28XhsVyksbY%3D&md5=f4c29e411c674e765914b5df25592803CAS |

Ayre, K. J., and Hulbert, A. J. (1996b). Effects of changes in dietary fatty acids on isolated skeletal muscle function in rats. Journal of Applied Physiology 80, 464–471.
| 1:CAS:528:DyaK28Xhslyltr0%3D&md5=f5f4c8b3c67a3f91f66471898f12c866CAS |

Ayre, K. J., and Hulbert, A. J. (1997). Dietary fatty acid profile affects endurance in rats. Lipids 32, 1265–1270.
Dietary fatty acid profile affects endurance in rats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXisVGhtg%3D%3D&md5=36f885128c8f17810f62c1f1ad569478CAS |

Ben-Hamo, M., McCue, M. D., McWilliams, S. R., and Pinshow, B. (2011). Dietary fatty acid composition influences tissue lipid profiles and regulation of body temperature in Japanese quail. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 181, 807–816.
Dietary fatty acid composition influences tissue lipid profiles and regulation of body temperature in Japanese quail.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpt1Onsrs%3D&md5=5122576e3579f94170e5b4869fa8af86CAS |

Brand, M. D., Turner, N., Ocloo, A., Else, P. L., and Hulbert, A. J. (2003). Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds. Biochemical Journal 376, 741–748.
Proton conductance and fatty acyl composition of liver mitochondria correlates with body mass in birds.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXps1yqtbo%3D&md5=6b937c9a9c71c1800f4d1ae0c8c57361CAS |

Chivers, D. J. (1992). Diets and guts. In ‘Cambridge Encyclopaedia of Human Evolution’. (Eds S. Jones, R. Martin and D. Pilbeam.) pp. 60–64. (Cambridge University Press: Cambridge.)

Couture, P., and Hulbert, A. J. (1995a). On the relationship between body mass, tissue metabolic rate and sodium pump activity in mammalian liver and kidney. The American Journal of Physiology 268, R641–R650.
| 1:CAS:528:DyaK2MXkslKrtrk%3D&md5=ee94536e5c501f72e3020bccf1613671CAS |

Couture, P., and Hulbert, A. J. (1995b). Membrane fatty acid composition is related to body mass in mammals. The Journal of Membrane Biology 148, 27–39.
Membrane fatty acid composition is related to body mass in mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpsVejtLs%3D&md5=26022da387c6413f9ea035bd6ff53a1aCAS |

Ellis, H. I. (1984). Energetics of free-ranging seabirds. In ‘Seabird Energetics’. (Eds G. C.Whittow, and H. Rahn.) pp. 203–234. (Plenum Press: New York.)

Else, P. L., and Wu, B. J. (1999). What role for membranes in determining the higher sodium pump molecular activity of mammals compared to ectotherms. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 169, 296–302.
What role for membranes in determining the higher sodium pump molecular activity of mammals compared to ectotherms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXmsFCrsLk%3D&md5=cdee827a54ea1ae7bbc4aa0c02ce8dd3CAS |

Falkenstein, F., Kortner, G., Watson, K., and Geiser, F. (2001). Dietary fats and body lipid composition in relation to hibernation in free-ranging echidnas. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 171, 189–194.
Dietary fats and body lipid composition in relation to hibernation in free-ranging echidnas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVentrc%3D&md5=9c115b3269dde43ed10ef190723aff17CAS |

Florant, G. L. (1998). Lipid metabolism in hibernators: the importance of essential fatty acids. American Zoologist 38, 331–340.
| 1:CAS:528:DyaK1cXjt1yksb0%3D&md5=878d9931b9977f8ba26439bb2c07ba96CAS |

Frank, C. L. (1992). The influence of dietary fatty acids on hibernation by golden-mantled ground squirrels (Spermophilus lateralis). Physiological Zoology 65, 906–920.
| 1:CAS:528:DyaK3sXktVOku7Y%3D&md5=eb07fd09a44ed95f4a67a267ed981167CAS |

Frank, C. L., Karpovich, S., and Barnes, B. M. (2008). Dietary fatty acid composition and the hibernation patterns of free-ranging arctic ground squirrels. Physiological and Biochemical Zoology 81, 486–495.
Dietary fatty acid composition and the hibernation patterns of free-ranging arctic ground squirrels.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1Orsrk%3D&md5=d2f307d60d47df0b02b12730c0a42cecCAS |

Fyrst, H., Pham, D. V., Lubin, B. H., and Kuypers, F. A. (1996). Formation of vesicles by the action of acyl-CoA:1-acyllysophosphatidylcholine acyltransferase from rat liver microsomes: optimal solubilization conditions and analysis of lipid composition and enzyme activity. Biochemistry 35, 2644–2650.
Formation of vesicles by the action of acyl-CoA:1-acyllysophosphatidylcholine acyltransferase from rat liver microsomes: optimal solubilization conditions and analysis of lipid composition and enzyme activity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xosl2itA%3D%3D&md5=3ecfcff834aa144745f453b6f0d2cd3cCAS |

Geiser, F. (1990). Influence of polyunsaturated and saturated dietary lipids on adipose tissue, brain and mitochondrial membrane fatty acid composition of a mammalian hibernator. Biochimica et Biophysica Acta 1046, 159–166.
| 1:CAS:528:DyaK3cXlvFShsLw%3D&md5=0421ac0f9959cd0c3636bb3ac31c23d1CAS |

Geiser, F. (1991). The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty-acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 161, 590–597.
The effect of unsaturated and saturated dietary lipids on the pattern of daily torpor and the fatty-acid composition of tissues and membranes of the deer mouse Peromyscus maniculatus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XitFensb8%3D&md5=d4e690963bf3fe8a4e9b8a14a5daf9f2CAS |

Geiser, F., and Kenagy, G. J. (1987). Polyunsaturated lipid diet lengthens torpor and reduces body temperature in a hibernator. The American Journal of Physiology 252, R897–R901.
| 1:CAS:528:DyaL2sXkslKksrc%3D&md5=d486ecf6d8d726cef578f7c8c8fd16e1CAS |

Geiser, F., and Learmonth, R. P. (1994). Dietary fats, selected body-temperature and tissue fatty-acid composition of agamid lizards (Amphibolurus nuchalis). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 164, 55–61.
Dietary fats, selected body-temperature and tissue fatty-acid composition of agamid lizards (Amphibolurus nuchalis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmsl2mtbc%3D&md5=7d358ac8c56ab4758f55ee63d382f988CAS |

Geiser, F., Firth, B. T., and Seymour, R. (1992). Polyunsaturated dietary lipids lower the selected body-temperature of a lizard. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 162, 1–4.
Polyunsaturated dietary lipids lower the selected body-temperature of a lizard.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XktVKrsb4%3D&md5=3651298cbf8375978e8921ba50df777aCAS |

Gudbjarnason, S., Doell, B., and Oskardottir, G. (1978). Docosahexaenoic acid in cardiac metabolism and function. Acta Biologica et Medica Germanica 37, 777–784.
| 1:CAS:528:DyaE1MXhvVCjtrc%3D&md5=7e33ed24d8b703957032e5064d004711CAS |

Haddad, L., Kelbert, L., and Hulbert, A. J. (2007). Extended longevity of queen honeybees compared to workers is associated with peroxidation-resistant membranes. Experimental Gerontology 42, 601–609.
Extended longevity of queen honeybees compared to workers is associated with peroxidation-resistant membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsF2htrg%3D&md5=514a1d008b737b1db099ce60c063d614CAS |

Hazel, J. R. (1995). Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation? Annual Review of Physiology 57, 19–42.
Thermal adaptation in biological membranes: is homeoviscous adaptation the explanation?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXksVeqsrs%3D&md5=c066f22eafdefcdd61fd3b661a8de5c8CAS |

Hill, V. L., and Florant, G. L. (2000). The effect of a linseed oil diet on hibernation in yellow-bellied marmots (Marmota flaviventris). Physiology & Behavior 68, 431–437.
The effect of a linseed oil diet on hibernation in yellow-bellied marmots (Marmota flaviventris).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhsFGqtLo%3D&md5=caa694b9fc3e8e257cb58451c56e8cfbCAS |

Hochachka, P. W., and Somero, G. N. (2002). ‘Biochemical Adaptation. Mechanism and Process in Physiological Evolution.’ (Oxford University Press: Oxford.)

Hulbert, A. J., and Else, P. L. (1990). The cellular basis of endothermic metabolism: a role for “leaky” membranes? News in Physiological Sciences 5, 25–28.
| 1:CAS:528:DyaK3MXjvFKlsQ%3D%3D&md5=f5cd2a22de1075a5233bd8bf90348638CAS |

Hulbert, A. J., and Else, P. L. (1999). Membranes as possible pacemakers of metabolism. Journal of Theoretical Biology 199, 257–274.
Membranes as possible pacemakers of metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkvVOrsbg%3D&md5=4831bcec1241b7657fe71e11dfdf11f2CAS |

Hulbert, A. J., and Else, P. L. (2000). Mechanisms underlying the cost of living in animals. Annual Review of Physiology 62, 207–235.
Mechanisms underlying the cost of living in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXltlGrsLY%3D&md5=6d3dd4779efe92472d02703b49d8d951CAS |

Hulbert, A. J., Faulks, S. C., Buttemer, W. A., and Else, P. L. (2002a). Acyl composition of muscle membranes varies with body size in birds. The Journal of Experimental Biology 205, 3561–3569.
| 1:CAS:528:DC%2BD38XpslCjtr4%3D&md5=41bff3380b9609e25cbc749b62802afaCAS |

Hulbert, A. J., Rana, T., and Couture, P. (2002b). The acyl composition of mammalian phospholipids: an allometric analysis. Comparative Biochemistry and Physiology. B, Comparative Biochemistry 132, 515–527.
The acyl composition of mammalian phospholipids: an allometric analysis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38zkvVahuw%3D%3D&md5=566328e3d08905462237d72989739a2bCAS |

Hulbert, A. J., Turner, N., Storlien, L. H., and Else, P. L. (2005). Dietary fats and membrane function: implications for metabolism and disease. Biological Reviews of the Cambridge Philosophical Society 80, 155–169.
Dietary fats and membrane function: implications for metabolism and disease.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2Fps1Krtg%3D%3D&md5=374e492e718ce3e3236673863d8f329cCAS |

Hulbert, A. J., Faulks, S. C., Harper, J. M., Miller, R. A., and Buffenstein, R. (2006). Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes. Mechanisms of Ageing and Development 127, 653–657.
Extended longevity of wild-derived mice is associated with peroxidation-resistant membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Gktbs%3D&md5=6b69c0c17250c9f4321f64a9ca650765CAS |

Hulbert, A. J., Pamplona, R., Buffenstein, R., and Buttemer, W. A. (2007). Life and death: metabolic rate, membrane composition and life span of animals. Physiological Reviews 87, 1175–1213.
Life and death: metabolic rate, membrane composition and life span of animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlaqu7vJ&md5=4ff0fddeb7321a6c27531442db220928CAS |

Hulbert, A. J., Beard, L., and Grigg, G. C. (2008). The exceptional longevity of an egg-laying mammal, the short-beaked echidna (Tachyglossus aculeatus) is associated with peroxidation-resistant membrane composition. Experimental Gerontology 43, 729–733.
The exceptional longevity of an egg-laying mammal, the short-beaked echidna (Tachyglossus aculeatus) is associated with peroxidation-resistant membrane composition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXptVGrsr8%3D&md5=34ca7c2fc968daf804d42e8c048d1694CAS |

Hurley, J. A., and Costa, D. P. (2001). Standard metabolic rate at the surface and during trained submersions in adult California sea lions (Zalophus californicus). The Journal of Experimental Biology 204, 3273–3281.
| 1:STN:280:DC%2BD3MrmtVOrtA%3D%3D&md5=96173e216a6f330427aefdc29c3f14a5CAS |

Iverson, S. J., Field, C., Bowen, W. D., and Blanchard, W. (2004). Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecological Monographs 74, 211–235.
Quantitative fatty acid signature analysis: a new method of estimating predator diets.Crossref | GoogleScholarGoogle Scholar |

Jenness, R., Birney, E., and Ayaz, K. (1980). Variation of l-gulonolactone oxidase activity in placental mammals. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology 67, 195–204.
Variation of l-gulonolactone oxidase activity in placental mammals.Crossref | GoogleScholarGoogle Scholar |

Klaiman, J. M., Price, E. R., and Guglielmo, C. G. (2009). Fatty acid composition of pectoralis muscle membrane, intracellular fat stores and adipose tissue of migrant and wintering white-throated sparrows (Zonotrichia albicollis). The Journal of Experimental Biology 212, 3865–3872.
Fatty acid composition of pectoralis muscle membrane, intracellular fat stores and adipose tissue of migrant and wintering white-throated sparrows (Zonotrichia albicollis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVyqtrs%3D&md5=9fb02f1ea2f259cc244e1dc6d88d31e4CAS |

Kleiber, M. (1961). ‘The Fire of Life.’ (John Wiley and Son: New York.)

Maillet, D., and Weber, J.-M. (2006). Performance-enhancing role of dietary fatty acids in a long-distance migrant shorebird: the semipalmated sandpiper. The Journal of Experimental Biology 209, 2686–2695.
Performance-enhancing role of dietary fatty acids in a long-distance migrant shorebird: the semipalmated sandpiper.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xpt1ymtrk%3D&md5=b95dc55e2ab635b44117f152882d3f05CAS |

Manning, R. (2001). Fatty acids in pollen: a review of their importance for honey bees. Bee World 82, 60–75.

McNab, B. K. (1986). The influence of food habits on the energetics of eutherian mammals. Ecological Monographs 56, 1–19.
The influence of food habits on the energetics of eutherian mammals.Crossref | GoogleScholarGoogle Scholar |

Miller, R. A., Harper, J. M., Dysko, R. C., Durkee, S. J., and Austad, S. N. (2002). Longer life spans and delayed maturation in wild-derived mice. Experimental Biology and Medicine 227, 500–508.
| 1:CAS:528:DC%2BD38Xlt1WgtLg%3D&md5=eda4d9b3536b94563fdb9c521e106821CAS |

Nagahuedi, S., Popesku, J. T., Trudeau, V. L., and Weber, J.-M. (2009). Mimicking the natural doping of migrant sandpipers in sedentary quails: effects of dietary n-3 fatty acids on muscle membranes and PPAR expression. The Journal of Experimental Biology 212, 1106–1114.
Mimicking the natural doping of migrant sandpipers in sedentary quails: effects of dietary n-3 fatty acids on muscle membranes and PPAR expression.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmtV2hs70%3D&md5=3d56f0fb39269c14b50bcba447b7ac85CAS |

Newman, R. E., Bryden, W. L., Fleck, E., Ashes, J. R., Buttemer, W. A., Storlien, L. H., and Downing, J. A. (2002). Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition. The British Journal of Nutrition 88, 11–18.
Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmsF2msrY%3D&md5=faa8bf7c3a5075170cdaba11f99e127bCAS |

Nichols, P. D., and Nichols, C. A. M. (2008). Microbial signature lipid profiling and exopolysaccharides: experiences initiated with Professor David C White and transported to Tasmania, Australia. Journal of Microbiological Methods 74, 33–46.
Microbial signature lipid profiling and exopolysaccharides: experiences initiated with Professor David C White and transported to Tasmania, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlSntrY%3D&md5=d8f0e79afd9557fb02edae85053a0f1bCAS |

Peoples, G. E., and McLennan, P. L. (2010). Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb. The British Journal of Nutrition 104, 1771–1779.
Dietary fish oil reduces skeletal muscle oxygen consumption, provides fatigue resistance and improves contractile recovery in the rat in vivo hindlimb.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFWjsrbK&md5=355dab629870129d7d65a2e907c3de2cCAS |

Peters, R. H. (1983). ‘The Ecological Implications of Body Size.’ (Cambridge University Press: Cambridge.)

Pierce, B. J., McWilliams, S. R., O’Connor, T. P., Place, A. R., and Guiglielmo, C. G. (2005). Effect of dietary fatty acid composition on depot fat and exercise performance in a migrating songbird, the red-eyed vireo. The Journal of Experimental Biology 208, 1277–1285.
Effect of dietary fatty acid composition on depot fat and exercise performance in a migrating songbird, the red-eyed vireo.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktlegtLw%3D&md5=1fd4fd33736fb90412ba39d9c325a581CAS |

Porter, R. K., Hulbert, A. J., and Brand, M. D. (1996). Allometry of mitochondrial proton leak: influence of membrane surface area and fatty acid composition. The American Journal of Physiology 271, R1550–R1560.
| 1:CAS:528:DyaK2sXmt1Chtw%3D%3D&md5=ce5c1e93cdef42999ad88d6f40bf10efCAS |

Price, E. R., and Guglielmo, C. G. (2009). The effect of muscle phospholipid fatty acid composition on exercise performance: a direct test in the migratory white-throated sparrow (Zonotrichia albicollis). The American Journal of Physiology 297, R775–R782.
| 1:CAS:528:DC%2BD1MXhtFGrtbnL&md5=400e01ddf6a413c935a251dd77c6e41cCAS |

Raison, J. K., and Lyons, J. M. (1971). Hibernation: alteration of mitochondrial membranes as a requisite for metabolism at low temperature. Proceedings of the National Academy of Sciences of the United States of America 68, 2092–2094.
Hibernation: alteration of mitochondrial membranes as a requisite for metabolism at low temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3MXlt1Khtb4%3D&md5=19252535f8d4bf86a9d4d410ab414df2CAS |

Rivers, J. P. W., Sinclair, A. J., and Crawford, M. A. (1975). Inability of the cat to desaturate essential fatty acids. Nature 258, 171–173.
Inability of the cat to desaturate essential fatty acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE28XktFWmtA%3D%3D&md5=7ca8a87619b504d0a47ae068e3b50c9cCAS |

Savage, N., and Goldstone, B. W. (1965). Effect of different dietary fats on oxygen consumption and serum lipid levels in the baboon (Papio ursinus). The British Journal of Nutrition 19, 459–467.
Effect of different dietary fats on oxygen consumption and serum lipid levels in the baboon (Papio ursinus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XhtlersA%3D%3D&md5=2d53b496d3707ab6ade404e1e9bfdaabCAS |

Shimomura, Y., Tamura, T., and Suzuki, M. (1990). Less body fat accumulation in rats fed a safflower oil diet than rats fed a beef tallow diet. The Journal of Nutrition 120, 1291–1296.
| 1:CAS:528:DyaK3MXktFChtg%3D%3D&md5=3e29388942d55ec2d2591cd5ce3708f6CAS |

Shmookler Reis, R. J., Xu, L., Lee, H., Chae, M., Thaden, J. J., Bharill, P., Tazearslan, C., Siegel, E., Alla, R., Zimniak, P., and Ayyadevara, S. (2011). Modulation of lipid biosynthesis contributes to stress resistance and longevity of C. elegans mutants. Aging 3, 125–147.
| 1:CAS:528:DC%2BC3MXksVyjtLw%3D&md5=171ee7731d45b55a6abe14f497d79d89CAS |

Simandle, E. T., Espinoza, R. E., Nussear, K. E., and Tracy, C. R. (2001). Lizards, lipids and dietary links to animal function. Physiological and Biochemical Zoology 74, 625–640.
Lizards, lipids and dietary links to animal function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvFShsL0%3D&md5=90f2daaff5967582f40ada001bf28da6CAS |

Takeuchi, H., Matsuo, T., Tokuyama, K., Shimomura, Y., and Suzuki, M. (1995). Diet-induced thermogenesis is lower in rats fed a lard diet than those fed a high oleic acid safflower oil diet, a safflower oil diet, or a linseed oil diet. The Journal of Nutrition 125, 920–925.
| 1:CAS:528:DyaK2MXkvVKrtL0%3D&md5=ea3a0b1da2bebdc96c04b9f45ff21af6CAS |

Thiemann, G. W., Iverson, S. J., and Stirling, I. (2008). Polar bear diets and arctic marine food webs: insights from fatty acid analysis. Ecological Monographs 78, 591–613.
Polar bear diets and arctic marine food webs: insights from fatty acid analysis.Crossref | GoogleScholarGoogle Scholar |

Tsuduki, T., Honma, T., Nakagawa, K., Ikeda, I., and Miyazawa, T. (2011). Long-term intake of fish oil increases oxidative stress and decreases lifespan in senescence-accelerated mice. Nutrition (Burbank, Los Angeles County, Calif.) 27, 334–337.
Long-term intake of fish oil increases oxidative stress and decreases lifespan in senescence-accelerated mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXit1WhsLk%3D&md5=2768152622d77b4372c312ebbc50b011CAS |

Valencak, T. G., and Ruf, T. (2007). N-3 polyunsaturated fatty acids impair lifespan but have no role for metabolism. Aging Cell 6, 15–25.
N-3 polyunsaturated fatty acids impair lifespan but have no role for metabolism.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisFCrs7o%3D&md5=7af904d327579319b08dade20b0863b6CAS |

Valencak, T. G., and Ruf, T. (2011). Feeding into old age: long-term effects of dietary fatty acid supplementation on tissue composition and life span in mice. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 181, 289–298.
Feeding into old age: long-term effects of dietary fatty acid supplementation on tissue composition and life span in mice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntVeqsA%3D%3D&md5=4e7e99e986d5bceb4e79aa62e102e5fbCAS |

Valentine, R., and Valentine, D. (2010). ‘Omega 3 Fatty Acids and the DHA Principle.’ (CRC Press: Boca Raton, FL.)

van Tets, I. G., and Hulbert, A. J. (1999). A comparison of the nitrogen requirements of the eastern pygmy possum, Cercartetus nanus, on a pollen and on a mealworm diet. Physiological and Biochemical Zoology 72, 127–137.
A comparison of the nitrogen requirements of the eastern pygmy possum, Cercartetus nanus, on a pollen and on a mealworm diet.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M7nsVWmsA%3D%3D&md5=919d6dbafd0d5b06c4703624d14b37edCAS |

Williams, C. T., and Buck, C. L. (2010). Using fatty acids as dietary tracers in seabird trophic ecology: theory, application and limitations. Journal fur Ornithologie 151, 531–543.
Using fatty acids as dietary tracers in seabird trophic ecology: theory, application and limitations.Crossref | GoogleScholarGoogle Scholar |

Winston, M. L. (1987). ‘The Biology of the Honey Bee.’ Harvard University Press: Cambridge, MA)

Wu, B. J., Hulbert, A. J., Storlien, L. H., and Else, P. L. (2001). Molecular activity of Na+,K+-ATPase from different sources is related to packing of membrane lipids. The Journal of Experimental Biology 204, 4271–4280.
| 1:CAS:528:DC%2BD38XovV2isg%3D%3D&md5=edfa8beb16d4907a98d7cc7f0662964dCAS |

Wu, B. J., Hulbert, A. J., Storlien, L. H., and Else, P. L. (2004). Membrane lipids and sodium pumps of cattle and crocodiles: an experimental test of the membrane pacemaker theory of metabolism. The American Journal of Physiology 287, R633–R641.
| 1:CAS:528:DC%2BD2cXnvVaqtbs%3D&md5=e35a2048ad486d4fcb5aaefc7c70496aCAS |