Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Haemorheology of the eastern grey kangaroo and the Tasmanian devil

Michael J. Simmonds A B F , Oguz K. Baskurt C , Herbert J. Meiselman D , Michael Pyne E , Michael Kakanis A B , Ekua Brenu A B , James Keane A , Rhys Christy A B and Sonya M. Marshall-Gradisnik A B
+ Author Affiliations
- Author Affiliations

A Faculty of Health Sciences and Medicine, Bond University, Gold Coast, Qld 4229, Australia.

B Population Health and Neuroimmunology Unit, Bond University, Gold Coast, Qld 4229, Australia.

C School of Medicine, Koc University, Rumelifeneri Yolu, Sariyer, Istanbul, Turkey.

D Department of Physiology and Biophysics, University of Southern California, Keck School of Medicine, Los Angeles, CA 90033, USA.

E Currumbin Wildlife Sanctuary, Currumbin, Qld 4223, Australia.

F Corresponding author. Email: misimmon@bond.edu.au

Australian Journal of Zoology 59(1) 26-34 https://doi.org/10.1071/ZO10083
Submitted: 14 December 2010  Accepted: 24 May 2011   Published: 22 June 2011

Abstract

The blood of two Australian marsupials, the eastern grey kangaroo (Macropus giganteus) and the Tasmanian devil (Sarcophilus harrisii), has been reported to have greater oxygen-carrying capacity (i.e. haemoglobin content) when compared with that of placental mammals. We investigated whether alterations of blood rheological properties are associated with the increased oxygen-carrying capacity of these marsupials. Eastern grey kangaroos (n = 6) and Tasmanian devils (n = 4) were anaesthetised for blood sampling; human blood (n = 6) was also sampled for comparison. Laboratory measurements included blood and plasma viscosity, red blood cell (RBC) deformability, RBC aggregation and the intrinsic tendency of RBC to aggregate, RBC surface charge and haematological parameters. Scanning electron micrographs of RBC from each species provided morphological information. High-shear blood viscosity at native haematocrit was highest for the Tasmanian devil. When haematocrit was adjusted to 0.4 L L–1, lower-shear blood viscosity was highest for the eastern grey kangaroo. RBC deformability was greatly reduced for the Tasmanian devil. Eastern grey kangaroo blood had the highest RBC aggregation, whereas Tasmanian devil RBC did not aggregate. The surface charge of RBC for marsupials was ~15% lower than that of humans. The dependence of oxygen-delivery effectiveness on haemoglobin concentration (i.e. oxygen content) and blood viscosity was quantitated by calculating the haematocrit to blood viscosity ratio and was 15–25% lower for marsupials compared with humans. Our results suggest that environmental pressures since the marsupial–monotreme divergence have influenced the development of vastly different strategies to maintain a match between oxygen demand and delivery.

Additional keywords: aggregation, deformability, erythrocyte, marsupial, red blood cell, viscosity.


References

Alexy, T., Pais, E., Armstrong, J. K., Meiselman, H. J., Johnson, C. S., and Fisher, T. C. (2006). Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy. Transfusion 46, 912–918.
Rheologic behavior of sickle and normal red blood cell mixtures in sickle plasma: implications for transfusion therapy.Crossref | GoogleScholarGoogle Scholar | 16734807PubMed |

Arundel, J. H., Barker, R. I. K., and Beveridge, I. (1977). Diseases of marsupials. In ‘The Biology of Marsupials’. (Eds B. Stonehouse and D. Gilmore.) pp. 141–154. (Macmillan Press: New York.)

Bartels, H., Riegel, K., Kleihauer, E., and Lang, E. M. (1966). Comparative studies of the respiratory functions of mammalian blood. II. Marsupialia: great grey kangaroo and Tasmanian devil. Respiration Physiology 1, 145–150.
Comparative studies of the respiratory functions of mammalian blood. II. Marsupialia: great grey kangaroo and Tasmanian devil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXks1ais70%3D&md5=77ae78751c81bd7b0bf44d051db8e500CAS | 5911879PubMed |

Baskurt, O. K. (2008). In vivo correlates of altered blood rheology. Biorheology 45, 629–638.
| 1:CAS:528:DC%2BD1cXhsVGgtr3N&md5=c4a9824678853f50703215fc26a00551CAS | 19065010PubMed |

Baskurt, O. K., and Meiselman, H. J. (2003). Blood rheology and hemodynamics. Seminars in Thrombosis and Hemostasis 29, 435–450.
Blood rheology and hemodynamics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpt1Ogtro%3D&md5=5703dd2b739a0a50712376101ce2739cCAS | 14631543PubMed |

Baskurt, O. K., Hardeman, M. R., Uyuklu, M., Ulker, P., Cengiz, M., Nemeth, N., Shin, S., Alexy, T., and Meiselman, H. J. (2009). Parameterization of red blood cell elongation index–shear stress curves obtained by ektacytometry. Scandinavian Journal of Clinical and Laboratory Investigation 69, 777–788.
Parameterization of red blood cell elongation index–shear stress curves obtained by ektacytometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyjtb7M&md5=f936e9d75d73614da34ee2ff89232369CAS | 19929721PubMed |

Baskurt, O. K., Levi, E., Caglayan, S., Dikmenoglu, N., Ucer, O., Guner, R., and Yorokan, S. (1991). The role of hemorheological factors in the coronary circulation. Clinical Hemorheology 11, 121–127.

Baskurt, O. K., Marshall-Gradisnik, S., Pyne, M., Simmonds, M., Brenu, E., Christy, R., and Meiselman, H. J. (2010). Assessment of the hemorheological profile of koala and echidna. Zoology (Jena) 113, 110–117.
| 20138490PubMed |

Baskurt, O. K., Neu, B., and Meiselman, H. J. (2011). ‘Red Blood Cell Aggregation.’ (CRC Press: Boca Raton, FL.)

Baskurt, O. K., Yalcin, O., and Meiselman, H. J. (2004). Hemorheology and vascular control mechanisms. Clinical Hemorheology and Microcirculation 30, 169–178.
| 15258340PubMed |

Bogar, L., Juricskay, I., Kesmarky, G., Kenyeres, P., and Toth, K. (2005). Erythrocyte transport efficacy of human blood: a rheological point of view. European Journal of Clinical Investigation 35, 687–690.
Erythrocyte transport efficacy of human blood: a rheological point of view.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2MrptVeksg%3D%3D&md5=19daa6956b708c87589fba77abf483bfCAS | 16269018PubMed |

Castellini, M., Elsner, R., Baskurt, O. K., Wenby, R. B., and Meiselman, H. J. (2006). Blood rheology of Weddell seals and bowhead whales. Biorheology 43, 57–69.
| 16627927PubMed |

Chasis, J. A., and Shohet, S. B. (1987). Red cell biochemical anatomy and membrane properties. Annual Review of Physiology 49, 237–248.
Red cell biochemical anatomy and membrane properties.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhtlGktbY%3D&md5=fcf0b5471104c122d0a6445c498e8784CAS | 3551800PubMed |

Chien, S. (1987). Red cell deformability and its relevance to blood flow. Annual Review of Physiology 49, 177–192.
Red cell deformability and its relevance to blood flow.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsFemu70%3D&md5=765b19f9ad28975dae323e8b8ede3040CAS | 3551796PubMed |

Cicha, I., Suzuki, Y., Tateishi, N., and Maeda, N. (2003). Changes of RBC aggregation in oxygenation–deoxygenation: pH dependency and cell morphology. American Journal of Physiology Heart and Circulatory Physiology 284, H2335–H2342.
| 1:CAS:528:DC%2BD3sXltVehsbk%3D&md5=32c678be93437b9ad913d83ed6cd4851CAS | 12742832PubMed |

Clark, P. (2004). ‘Haematology of Australian Mammals.’ (CSIRO Publishing: Melbourne.)

Cloutier, G., and Qin, Z. (1997). Ultrasound backscattering from non-aggregating and aggregating erythrocytes – a review. Biorheology 34, 443–470.
Ultrasound backscattering from non-aggregating and aggregating erythrocytes – a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1czgsVGnsg%3D%3D&md5=067707964b8a8aef5b70e87aaa089bd5CAS | 9640358PubMed |

Cokelet, G. R., and Meiselman, H. J. (2007). Macro- and micro-rheological properties of blood. In ‘Handbook of Hemorheology and Hemodynamics’. (Eds O. K. Baskurt, M. R. Hardeman, M. W. Rampling and H. J. Meiselman.) pp. 45–71. (IOS Press: Amsterdam.)

Dalinghaus, M., Knoester, H., Gratama, J. W., Van der Meer, J., Zijlstra, W. G., and Kuipers, J. R. (1994). Effect of increased whole blood viscosity on regional blood flows in chronically hypoxemic lambs. The American Journal of Physiology 267, H471–H476.
| 1:STN:280:DyaK2czks1Cgtw%3D%3D&md5=cc986604ca90445355e1634d4ddfc84dCAS | 8067398PubMed |

Dawson, T. J., and Hulbert, A. J. (1970). Standard metabolism, body temperature, and surface areas of Australian marsupials. The American Journal of Physiology 218, 1233–1238.
| 1:STN:280:DyaE3c7ktV2htA%3D%3D&md5=31452ec8c69e6b0d0267437673782c4dCAS | 5435424PubMed |

Dawson, T. J., and Needham, A. D. (1981). Cardiovascular characteristics of two resting marsupials: an insight into the cardio-respiratory allometry of marsupials. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 145, 95–100.
Cardiovascular characteristics of two resting marsupials: an insight into the cardio-respiratory allometry of marsupials.Crossref | GoogleScholarGoogle Scholar |

de Kroon, M. G. M., Slager, C. J., Gussenhoven, W. J., Serruys, P. W., Roelandt, J. R. T. C., and Bom, N. (1991). Cyclic changes of blood echogenicity in high-frequency ultrasound. Ultrasound in Medicine & Biology 17, 723–728.
Cyclic changes of blood echogenicity in high-frequency ultrasound.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK387kt1egsg%3D%3D&md5=b55ea6c2e627e473d9032eecc4324bcfCAS | 1781076PubMed |

Hardeman, M. R., Dobbe, J. G., and Ince, C. (2001). The Laser-assisted Optical Rotational Cell Analyzer (LORCA) as red blood cell aggregometer. Clinical Hemorheology and Microcirculation 25, 1–11.
| 1:STN:280:DC%2BD38%2FmsVCmug%3D%3D&md5=c0d69a6658e703df4a9db600d4f59981CAS | 11790865PubMed |

Hardeman, M. R., Goedhart, P. T., and Shin, S. (2007). Methods in hemorheology. In ‘Handbook of Hemorheology and Hemodynamics’. (Eds O. K. Baskurt, M. R. Hardeman, M. W. Rampling and H. J. Meiselman.) pp. 242–266. (IOS Press: Amsterdam.)

Hochmuth, R. M., and Waugh, R. E. (1987). Erythrocyte membrane elasticity and viscosity. Annual Review of Physiology 49, 209–219.
Erythrocyte membrane elasticity and viscosity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXhsFemu7o%3D&md5=4007175a480a93a6c5a36a4ebf62a67aCAS | 3551799PubMed |

Isaacks, R., Nicol, S., Sallis, J., Zeidler, R., and Kim, H. D. (1984). Erythrocyte phosphates and hemoglobin function in monotremes and some marsupials. The American Journal of Physiology 246, R236–R241.
| 1:CAS:528:DyaL2cXhsFCnt7s%3D&md5=0c489568b69f0cfc6e45a2a43e0773c0CAS | 6696146PubMed |

Jones, M. E., Grigg, G. C., and Beard, L. A. (1997). Body temperatures and activity patterns of Tasmanian devils (Sarcophilus harrisii) and eastern quolls (Dasyurus viverrinus) through a subalpine winter. Physiological Zoology 70, 53–60.
| 1:STN:280:DyaK2sznsFSjsw%3D%3D&md5=b0c295a47f85ad2dd35ec53b8934242eCAS | 9231376PubMed |

Kinnear, J. E., and Brown, G. D. (1967). Minimum heart rates of marsupials. Nature 215, 1501.
Minimum heart rates of marsupials.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1c%2FhtFSkug%3D%3D&md5=53f25ab9b404c3c9677adcdee85fa7aeCAS | 6052752PubMed |

Maxwell, G.M., Elliott, R.B., and Kneebone, G.M. (1964). Hemodynamics of kangaroos and wallabies. American Journal of Physiology – Legacy Content 206, 967–970.

McCarron, H. C., Buffenstein, R., Fanning, F. D., and Dawson, T. J. (2001). Free-ranging heart rate, body temperature and energy metabolism in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus) in the arid regions of south east Australia. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 171, 401–411.
Free-ranging heart rate, body temperature and energy metabolism in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus) in the arid regions of south east Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvltV2hug%3D%3D&md5=af4bbb8a1a7eb278cbaa9a7777e8df98CAS | 11497128PubMed |

Meiselman, H. J., and Baskurt, O. K. (2006). Hemorheology and hemodynamics: dove andare? Clinical Hemorheology and Microcirculation 35, 37–43.
| 16899904PubMed |

Meiselman, H. J., Castellini, M. A., and Elsner, R. (1992). Hemorheological behaviour of seal blood. Clinical Hemorheology 12, 657–675.

Most, A. S., Ruocco, N. A., and Gewirtz, H. (1986). Effect of a reduction in blood viscosity on maximal myocardial oxygen delivery distal to a moderate coronary stenosis. Circulation 74, 1085–1092.
| 1:STN:280:DyaL2s%2FivVKntg%3D%3D&md5=a6ef42983882b8bdf80a73ab8c88efcfCAS | 3769166PubMed |

Neu, B., and Meiselman, H. J. (2007). Red blood cell aggregation. In ‘Handbook of Hemorheology and Hemodynamics’. (Eds O. K. Baskurt, M. R. Hardeman, M. W. Rampling and H. J. Meiselman.) pp. 114–136. (IOS Press: Amsterdam.)

Paeng, D.-G., Joo Choi, M., and Kirk Shung, K. (2004). Investigation of blood under pulsatile flow using ultrasound imaging. International Congress Series 1274, 99–108.
Investigation of blood under pulsatile flow using ultrasound imaging.Crossref | GoogleScholarGoogle Scholar |

Pal, R. (2003). Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. Journal of Biomechanics 36, 981–989.
Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes.Crossref | GoogleScholarGoogle Scholar | 12757807PubMed |

Parsons, R. S., Heddle, R. W., Flux, W. G., and Guiler, E. R. (1970). Studies on the blood of the Tasmanian devil. Comparative Biochemistry and Physiology 32, 345–351.
Studies on the blood of the Tasmanian devil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3cXoslOitA%3D%3D&md5=9da75e60ab8bca43f03a4fe5cc30aad5CAS | 4190500PubMed |

Rampling, M. W., Meiselman, H. J., Neu, B., and Baskurt, O. K. (2004). Influence of cell-specific factors on red blood cell aggregation. Biorheology 41, 91–112.
| 1:CAS:528:DC%2BD2cXisFGis70%3D&md5=bddda8767c6d7984923f9eebad1ff43dCAS | 15090679PubMed |

Rebel, A., Lenz, C., Krieter, H., Waschke, K. F., Van Ackern, K., and Kuschinsky, W. (2001). Oxygen delivery at high blood viscosity and decreased arterial oxygen content to brains of conscious rats. American Journal of Physiology. Heart and Circulatory Physiology 280, H2591–H2597.
| 1:CAS:528:DC%2BD3MXksFCls70%3D&md5=c3c88abaaa90b82b654d6308987216a8CAS | 11356614PubMed |

Reinhart, W. H., and Singh, A. (1990). Erythrocyte aggregation: the roles of cell deformability and geometry. European Journal of Clinical Investigation 20, 458–462.
Erythrocyte aggregation: the roles of cell deformability and geometry.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3M%2FjtFOjtQ%3D%3D&md5=ac38ef56428677f0a1bc494b3f89773eCAS | 2121506PubMed |

Schmalzer, E. A., Lee, J. O., Brown, A. K., Usami, S., and Chien, S. (1987). Viscosity of mixtures of sickle and normal red cells at varying hematocrit levels. Implications for transfusion. Transfusion 27, 228–233.
Viscosity of mixtures of sickle and normal red cells at varying hematocrit levels. Implications for transfusion.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s3jsFKhtA%3D%3D&md5=48527e9c10d96e8b864133d1ec18e5b4CAS | 3590284PubMed |

Windberger, U., Bartholovitsch, A., Plasenzotti, R., Korak, K. J., and Heinze, G. (2003). Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data. Experimental Physiology 88, 431–440.
Whole blood viscosity, plasma viscosity and erythrocyte aggregation in nine mammalian species: reference values and comparison of data.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7pvFCquw%3D%3D&md5=310a68907b0e71379c89935782c0bc37CAS | 12719768PubMed |