Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

No evidence of expression of two classes of natural antibiotics (cathelicidins and defensins) in a sample of platypus milk

Camilla M. Whittington A , Julie A. Sharp B , Anthony Papenfuss C and Katherine Belov A D
+ Author Affiliations
- Author Affiliations

A Faculty of Veterinary Science, The University of Sydney, NSW 2006, Australia.

B Institute for Technology, Research & Innovation, Deakin University, Geelong, Vic. 3214, Australia.

C Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic. 3052, Australia.

D Corresponding author. Email: kbelov@vetsci.usyd.edu.au

Australian Journal of Zoology 57(4) 211-217 https://doi.org/10.1071/ZO09047
Submitted: 10 April 2009  Accepted: 31 August 2009   Published: 26 October 2009

Abstract

Marsupial neonates are born without a fully functioning immune system, and are known to be protected in part by natural antimicrobial peptides present in their mother’s milk. Monotreme neonates hatch at a similar stage in development, and it has been hypothesised that their survival in a non-sterile burrow also relies on the presence of natural antibiotics in their mother’s milk. Here we review the field of monotreme lactation and the antimicrobial peptide complement of the platypus (Ornithorhynchus anatinus). Using reverse transcriptase–polymerase chain reaction of milk cell RNA from a sample of platypus milk, we found no evidence for the expression of cathelicidins or defensins in the milk. This was unexpected. We hypothesise that these natural antibiotics may instead be produced by the young platypuses themselves.


Acknowledgements

The authors thank Tom Grant for providing the milk sample, and Erin Noonan, David Obendorf, Timothy Hore, and the Tasmanian Department of Primary Industries and Water for providing tissue and RNA samples. CW is supported by an Australian Postgraduate Award and a Fulbright Postgraduate Scholarship.


References

Bals, R. , and Wilson, J. M. (2003). Cathelicidins – a family of multifunctional antimicrobial peptides. Cellular and Molecular Life Sciences 60, 711–720.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed | Grant T. (2007). ‘Platypus.’ 4th edn. (CSIRO Publishing: Melbourne.)

Grant, T. , Griffiths, M. , and Leckie, R. M. C. (1983). Aspects of lactation in the platypus Ornithorhynchus anatinus (Monotremata), in waters of eastern New South Wales. Australian Journal of Zoology 31, 881–889.
Crossref | GoogleScholarGoogle Scholar | CAS | Griffiths M. (1978). ‘The Biology of the Monotremes.’ (Academic Press: New York.)

Griffiths, M. , Green, B. , Leckie, R. M. C. , Messer, M. , and Newgrain, K. W. (1984). Constituents of platypus and echidna milk, with particular reference to the fatty-acid complement of the triglycerides. Australian Journal of Biological Sciences 37, 323–329.
CAS | Tyndale-Biscoe C. H. , and Janssens P. A. (1988). ‘The Developing Marsupial.’ (Springer-Verlag: Berlin.)

van’t Hof, W. , Veerman, E. C. , Helmerhorst, E. J. , and Amerongen, A. V. (2001). Antimicrobial peptides: properties and applicability. Biological Chemistry 382, 597–619.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Warren, W. C. , Hillier, L. W. , Marshall Graves, J. A. , Birney, E. , and Ponting, C. P. , et al. (2008). Genome analysis of the platypus reveals unique signatures of evolution. Nature 453(7192), 175–183.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Whittington, C. M. , Papenfuss, A. T. , Bansal, P. , Torres, A. M. , and Wong, E. S. , et al. (2008a). Defensins and the convergent evolution of platypus and reptile venom genes. Genome Research 18, 986–994.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Whittington, C. M. , Papenfuss, A. T. , Kuchel, P. W. , and Belov, K. (2008b). Expression patterns of platypus defensin and related venom genes across a range of tissue types reveal the possibility of broader functions for OvDLPs than previously suspected. Toxicon 52, 559–565.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Wronski, E. V. , Woods, G. M. , and Munday, B. L. (2003). Antibody response to sheep red blood cells in platypus and echidna. Comparative Biochemistry and Physiology. A, Comparative Physiology 136, 957–963.


Zaiou, M. , and Gallo, R. (2002). Cathelicidins, essential gene-encoded mammalian antibiotics. Journal of Molecular Medicine 80, 549–561.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Zhao, H. , Gan, T. X. , Liu, X. D. , Jin, Y. , Lee, W. H. , Shen, J. H. , and Zhang, Y. (2008). Identification and characterization of novel reptile cathelicidins from elapid snakes. Peptides 29, 1685–1691.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |