The extraordinary mating system of Zeus bugs (Heteroptera : Veliidae : Phoreticovelia sp.)*
Göran Arnqvist A C , Therésa M. Jones B and Mark A. Elgar BA Department of Animal Ecology, Evolutionary Biology Centre, Norbyv. 18D, University of Uppsala, SE-752 36 Uppsala, Sweden.
B Department of Zoology, The University of Melbourne, Vic. 3010, Australia.
C Corresponding author. Email: goran.arnqvist@ebc.uu.se
Australian Journal of Zoology 55(2) 131-137 https://doi.org/10.1071/ZO06090
Submitted: 3 November 2006 Accepted: 28 February 2007 Published: 28 May 2007
Abstract
Wingless female Zeus bugs (genus: Phoreticovelia) produce a secretion from dorsal glands that males feed upon when riding on females. This unique form of sex-role-reversed nuptial feeding may have set the stage for an unusual mating system. Here, we provide natural history details of the mating behaviour for two Zeus bug species. While these species have many mating behaviours in common, the wing morphs within species exhibit entirely different mating strategies. Adult wingless females are ridden permanently by adult wingless males. In the wild, adult sex-ratios among the wingless morph are male-biased; few unmounted adult females exist and many males instead ride immature females who also produce glandular secretions. In contrast, sex-ratios among the winged morph is not male-biased, sexual size dimorphism is less pronounced, females have no dorsal glands and are, consequently, not ridden by males. Field and laboratory observations show that mating is strongly assortative by wing morph. This assortment may allow evolutionary divergence between the two morphs. We discuss the implications of this mating system and suggest that it adds to those studies showing that sexually antagonistic coevolution can be a driver of mating system evolution.
Acknowledgements
We thank two anonymous referees for their invaluable comments; the Queensland Parks and Wildlife Service for permissions to sample Zeus bugs in the field; and the Australian Research Council (Grant No. DP0583994) and The Swedish Research Council for financial support.
Amano, H. , and Hayashi, K. (1998). Costs and benefits for water strider (Aquarius paladum) females of carrying guarding, reproductive males. Ecological Research 13, 263–272.
| Crossref | GoogleScholarGoogle Scholar |
Arnqvist, G. , Jones, T. M. , and Elgar, M. A. (2003). Reversal of sex roles in nuptial feeding. Nature 424, 387.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Bolnick, D. I. (2004). Waiting for sympatric speciation. Evolution 58, 895–899.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Elgar, M. A. , and Schneider, J. M. (2004). Evolutionary significance of sexual cannibalism. Advances in the study of Animal Behavior , 135–163.
Fromhage, L. , Elgar, M. A. , and Schneider, J. M. (2005). Faithful without care: the evolution of monogyny. Evolution 59, 1400–1405.
| Crossref | GoogleScholarGoogle Scholar | PubMed |
Jormalainen, V. (1998). Precopulatory mate guarding in crustaceans: male competitive strategy and intersexual conflict. Quarterly Review of Biology 73, 275–304.
| Crossref | GoogleScholarGoogle Scholar |
Munday, P. L. , Buston, P. M. , and Warner, R. R. (2006). Diversity and flexibility of sex-change strategies in animals. Trends in Ecology & Evolution 21, 89–95.
| Crossref | GoogleScholarGoogle Scholar |
Polhemus, D. A. , and Polhemus, J. T. (2000). Additional new genera and species of Microveliinae (Heteroptera: Veliidae) from New Guinea and adjacent regions. Tijdschrift voor Entomologie 143, 91–123.
Spence, J. R. (1989). The habitat templet and life-history strategies of pond skaters (Heteroptera: Gerridae) – reproductive potential, phenology, and wing polymorphism. Canadian Journal of Zoology 67, 2432–2447.
Spence, J. R. , and Andersen, N. M. (1994). The biology of water striders – interactions between systematics and ecology. Annual Review of Entomology 39, 101–128.
| Crossref | GoogleScholarGoogle Scholar |
* This contribution is dedicated to the memory of Nils Møller Andersen, whose pioneering work on the biology and systematics of semiaquatic Heteroptera is a continual source of inspiration.