Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Effects of salinity on the survival, growth and development of tadpoles of the brown tree frog, Litoria ewingii

Kavitha Chinathamby A , Richard D. Reina A C , Paul C. E. Bailey A B and Belinda K. Lees A
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia.

B Australian Centre for Biodiversity: Analysis Policy Management, Monash University, Clayton, Vic. 3800, Australia.

C Corresponding author. Email: richard.reina@sci.monash.edu.au

Australian Journal of Zoology 54(2) 97-105 https://doi.org/10.1071/ZO06006
Submitted: 12 January 2006  Accepted: 24 March 2006   Published: 11 May 2006

Abstract

We investigated the effects of 4% seawater (sw), 8% sw, 12% sw and 16% sw (1.4 g NaCl L–1, 2.8 g NaCl L–1, 4.2 g NaCl L–1 and 5.6 g NaCl L–1, respectively) on survival, mass and development of larvae of the brown tree frog, Litoria ewingii. Salinity of 16% sw significantly decreased survival of tadpoles such that 39% of tadpoles in 16% sw treatment survived to metamorphosis compared with 92% in the control group (freshwater). Growth (mass) of 16% sw tadpoles (0.048 g ± 0.005 g) slowed significantly during early development compared with control tadpoles (0.105 g ± 0.004 g); however, there was no significant difference in final metamorphosis mass between 16% sw (0.192 g ± 0.008 g) and control tadpoles (0.226 ± 0.006 g). Time taken to reach metamorphosis was greater for 16% sw tadpoles (84 ± 1.8 days) than for control tadpoles (55 ± 0.84 days). Tadpoles at salinity concentrations of 4% sw, 8% sw and 12% sw were significantly heavier than control tadpoles at metamorphosis. Our results show that moderate levels of salinity (16% sw) are sufficient to significantly reduce survival and retard development of tadpoles of L. ewingii.


Acknowledgments

We thank Gerry Quinn and Ranmalee Eramudugolla for statistical advice, Amy Scott for help with setup of experiments and Shaun Johnson for data management. We thank Gerry Marantelli from the Amphibian Research Centre for technical advice and supply of eggs. This study was conducted under Animal Ethics approval BSCI2004/10 from Monash University.


References

Anstis M. (2002). ‘Tadpoles of South-eastern Australia: a Guide with Keys.’ (Reed New Holland: Sydney.)

Bailey P. C. E., Boon P. I., and Morris K. (2002). Australian biodiversity: salt sensitivity database. Land and Water Australia. Available at http://www.rivers.gov.au/research/contaminants/saltsen.htm [Verified 20 February 2005]

Bailey P. C. E., Boon P. I., Blinn D. W., and Williams W. D. (2006). Salinity as an ecological perturbation to rivers, streams and wetlands of the arid and semi-arid zone. In ‘Changeable, Changed, Changing: the Ecology of Rivers from the World’s Dry Regions’. (Ed. R. T. Kingsford.) pp. 280–314. (Cambridge University Press: Cambridge.)

Baumgarten D. S. (1991). Salinity tolerance and the effect of habitat salinization on three common species of frog in the wheatbelt of Western Australia. B.Sc.(Honours) Thesis, University of Western Australia, Perth.

Bee Bee, T. J. C. (1985). Salt tolerances of natterjack toad (Bufo calamita) eggs and larvae from coastal and inland populations in Britain. The Herpetological Journal 1, 14–16.
Boutilier R. G., Stiffler D. F., and Toews D. P. (1992). Exchange of gases, ions, and water in aquatic amphibians. In ‘Environmental Physiology of the Amphibians’. (Eds M. E. Feder and W. W. Burggren.) pp. 81–124. (The University of Chicago Press: Chicago.)

Brock, M. A. , Nielsen, D. L. , and Crossle, K. (2005). Changes in biotic communities developing from freshwater wetland sediments under experimental salinity and water regimes. Freshwater Biology 50, 1376–1390.
Crossref | GoogleScholarGoogle Scholar | Burggren W. W., and Just J. J. (1992). Developmental changes in physiological systems. In ‘Environmental Physiology of the Amphibians’. (Eds M. E. Feder and W. W. Burggren.) pp. 467–530. (The University of Chicago Press: Chicago.)

Calabrese, E. J. , and Baldwin, L. A. (1998). Hormesis as a biological hypothesis. Environmental Health Perspectives 106, 357–362.
PubMed | Feder M. E. (1992). A perspective on the environmental physiology of the amphibians. In ‘Environmental Physiology of the Amphibians’. (Eds M. E. Feder and W. W. Burggren.) pp. 1–6. (The University of Chicago Press: Chicago.)

Ferraro T. J., and Burgin S. (1993). Amphibian decline: a case study in Western Sydney. In ‘Herpetology in Australia: A Diverse Discipline’. (Eds D. Lunney and D. Ayers.) pp. 197–204. (Royal Zoological Society of New South Wales: Sydney.)

Flowers E. (2004). The effect of salinity on the breeding and development of the spotted green frog, Limnodynastes tasmaniensis. B.Sc.(Honours) Thesis, Australian National University, Canberra.

Glennemeier, K. A. , and Denver, R. J. (2002). Role for corticoids in mediating the response of Rana pipiens tadpoles to intraspecific competition. Journal of Experimental Zoology 292, 32–40.
Crossref | GoogleScholarGoogle Scholar | PubMed | NLWRA (2001). ‘National Land Water Resources Audit.’ (Land and Water Resources Australia: Canberra.)

O’Brien T. A. and Ryan T. (1997). ‘Impact of saline drainage on key Murray–Darling basin fish species.’ NRMS Project R5004. (Freshwater Ecology Division, Department of Resources and Environment: Melbourne.)

Padhye, A. D. , and Ghate, H. V. (1992). Sodium choloride and potassium chloride tolerance of different stages of the frog, Microhyla ornata. Herpetological Journal 2, 18–23.
Quincey L. M. (1991). The effect of high salinities on growth and development of the spawn and larvae of the spotted grass frog, Limnodynastes tasmaniensis. B.Sc.(Honours) Thesis, University of Adelaide.

Richards, S. L. , and Bulls, C. M. (1990). Size limited predation on tadpoles of three Australian frogs. Copeia 1990, 1041–1046.
Crossref | GoogleScholarGoogle Scholar | Roberts D., Conroy S., and Williams K. (1999). Conservation status of frogs in Western Australia. In ‘Declines and Disappearances of Australian Frogs’. (Ed. A. Campbell.) pp. 177–184. (Environment Australia: Canberra.)

Rowe, C. L. , Kinney, O. M. , Nagle, R. D. , and Congdon, J. D. (1998). Elevated maintenance cost in an anuran (Rana catesbeiana) exposed to a mixture of trace elements during the embryonic and early larval periods. Physiological Zoology 71, 27–35.
PubMed | Ultsch G. R., Bradford D. F., and Freda J. (1999). Physiology: coping with the environment. In ‘Tadpoles: The Biology of Anuran Larvae’. (Eds R. W. McDiarmid and R. Altig.) pp. 189–214. (The University of Chicago Press: Chicago.)

Viertel, B. (1999). Salt tolerance of Rana temporaria: spawning site selection and survival during embryonic development (Amphibia, Anura). Amphibia–Reptilia 20, 161–171.
Crossref | GoogleScholarGoogle Scholar | Viertel B., and Richter S. (1999). Anatomy: viscera and endocrines. In ‘Tadpoles: The Biology of Anuran Larvae’. (Eds R. W. McDiarmid and R. Altig.) pp. 92–148. (The University of Chicago Press: Chicago.)

Warwick, N. W. M. , and Bailey, P. C. E. (1997). The effect of increasing salinity on the growth and ion content of three non-halophytic wetland macrophytes. Aquatic Botany 58, 73–88.
Crossref | GoogleScholarGoogle Scholar |

Warwick, N. W. M. , and Bailey, P. C. E. (1998). The effect of time of exposure to NaCl on leaf demography and growth for two non-halophytic wetland macrophytes, Potamogeton tricarinatus F. Muell. & A. Benn. Ex A. Benn. and Triglochin procera R. Br. Aquatic Botany 62, 19–31.
Crossref | GoogleScholarGoogle Scholar |

White, A. W. (1995). Disappearing frogs. Australian Zoologist 30, 48–56.


Wilbur, H. M. , and Collins, J. P. (1973). Ecological aspects of amphibian metamorphosis. Science 182, 1305–1314.


Williams, W. D. (2001). Anthropogenic salinisation of inland waters. Hydrobiologia 466, 329–337.
Crossref | GoogleScholarGoogle Scholar |

Williamson, I. , and Bull, C. M. (1999). Population ecology of the Australian frog Crinia signifera larvae. Wildlife Research 26, 81–99.
Crossref | GoogleScholarGoogle Scholar |

Xu, Q. , and Oldham, R. S. (1997). Lethal and sublethal effects of nitrogen fertilizer ammonium nitrate on common toad (Bufo Bufo) tadpoles. Archives of Environmental Contamination and Toxicology 32, 298–303.
Crossref | GoogleScholarGoogle Scholar | PubMed |