Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Ecological and evolutionary significance of sizes of giant extinct kangaroos

Kristofer M. Helgen A B C , Rod T. Wells D , Benjamin P. Kear B C , Wayne R. Gerdtz E and Timothy F. Flannery B F
+ Author Affiliations
- Author Affiliations

A Division of Mammals, National Museum of Natural History, Smithsonian Institution, NHB 390, MRC 108, PO Box 37012, Washington, DC 20013-7012, USA.

B South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.

D School of Biological Sciences, Flinders University of South Australia, Adelaide, SA 5001, Australia.

E School of Ecology and Environment, Deakin University, Melbourne Campus, Burwood, Vic. 3125, Australia.

F Corresponding author. Email: flannery.tim@saugov.sa.gov.au

Australian Journal of Zoology 54(4) 293-303 https://doi.org/10.1071/ZO05077
Submitted: 21 December 2005  Accepted: 22 June 2006   Published: 11 August 2006

Abstract

A method, based on femoral circumference, allowed us to develop body mass estimates for 11 extinct Pleistocene megafaunal species of macropodids (Protemnodon anak, P. brehus, P. hopei, P. roechus, Procoptodon goliah, ‘P.’ gilli, Simosthenurus maddocki, S. occidentalis, Sthenurus andersoni, S. stirlingi and S. tindalei) and three fossil populations of the extant eastern grey kangaroo (Macropus giganteus). With the possible exception of P. goliah, the extinct taxa were browsers, among which sympatric, congeneric species sort into size classes separated by body mass increments of 20–75%. None show evidence of size variation through time, and only the smallest (‘P.’ gilli) exhibits evidence suggestive of marked sexual dimorphism. The largest surviving macropodids (five species of Macropus) are grazers which, although sympatric, do not differ greatly in body mass today, but at least one species (M. giganteus) fluctuated markedly in body size over the course of the Pleistocene. Sexual dimorphism in these species is marked, and may have varied through time. There is some mass overlap between the extinct and surviving macropodid taxa. With a mean estimated body mass of 232 kg, Procoptodon goliah was the largest hopping mammal ever to exist.


Acknowledgments

This paper is dedicated to the memory of the late Russell V. Baudinette. We thank Dick Tedford, Bert Roberts, Jared Diamond, Craig McGowan, Gavin Prideaux, Tomasz Owerkowicz, Phillip Matthews, Mike Bennett and two anonymous reviewers for insightful discussion and other contributions to this manuscript. We especially thank S. Ingelby and T. Ennis (Australian Museum), W. Longmore (Museum Victoria), and C. Kemper and D. Stemmer (South Australian Museum) for access to specimens under their care. John Kelly of Kangaroo Industry Australia and the staff of Southern Game Meats facilitated the acquisition of femora of red and grey kangaroos of known bodyweight. KMH was supported by fellowships from NSF and the Australian IPRS program.


References

Alexander, R. M. (1998). All-time giants: the largest animals and their problems. Palaeontology 41, 1231–1245.
Baudinette R. V. (1989). The biomechanics and energetics of locomotion in Macropoidea. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 245–253. (Surrey Beatty: Sydney.)

Bennett, M. B. (2000). Unifying principles in terrestrial locomotion: do hopping Australian marsupials fit in? Physiological and Biochemical Zoology 73, 726–735.
Crossref | GoogleScholarGoogle Scholar | PubMed | Damuth J., and MacFadden B. J. (1990). ‘Body Size in Mammalian Paleobiology: Estimation and Biological Implications.’ (Cambridge University Press: Cambridge.)

Erickson, G. M. , De Ricqles, A. , De Buffrenil, V. , Molnar, R. E. , and Bayless, M. K. (2003). Vermiform bones and the evolution of gigantism in Megalania: how a reptilian fox became a lion. Journal of Vertebrate Paleontology 23, 966–970.
Crossref | GoogleScholarGoogle Scholar | Flannery T. F. (1989). Phylogeny of the Macropodoidea: a study in convergence. In ‘Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 1–46. (Surrey Beatty: Sydney.)

Flannery T. F. (1995). ‘Mammals of New Guinea.’ Revised edn. (Reed Publishing: Sydney.)

Flannery T. F. (2004). ‘Country.’ (Text Publishing: Melbourne.)

Flannery, T. F. , and Gott, B. (1985). The Spring Creek locality: a late Pleistocene megafaunal site from southwestern Victoria. Australian Zoologist 21, 385–422.
Kingdon J. (1997). ‘The Kingdon Field Guide to African Mammals.’ (Academic Press: London.)

Kurtén B. (1968). ‘Pleistocene Mammals of Europe.’ (Aldine Publications: Chicago.)

Long J., Archer M., Flannery T., and Hand S. (2002). ‘Prehistoric Mammals of Australia and New Guinea.’ (University of New South Wales Press: Sydney.)

Marshall, L. G. , and Corruccini, R. S. (1978). Variability, evolutionary rates, and allometry in dwarfing lineages. Paleobiology 4, 101–118.
McCullough D. R., and McCullough Y. (2000). ‘Kangaroos in Outback Australia: Comparative Ecology and Behaviour of Three Coexisting Species.’ (Columbia University Press: New York.)

Miller, G. H. , Fogel, M. L. , Magee, J. W. , Gagan, M. K. , Clarke, S. J. , and Johnson, B. J. (2005). Ecosystem collapse in Pleistocene Australia and a human role in megafaunal extinction. Science 309, 287–290.
Crossref | GoogleScholarGoogle Scholar | PubMed | Molnar R. E. (2004). ‘Dragons in the Dust: The Paleobiology of the Giant Monitor Lizard Megalania.’ (Indiana University Press: Bloomington, IL.)

Murray P. (1984). Extinctions Downunder: a bestiary of extinct Australian late Pleistocene monotremes and marsupials. In ‘Quaternary Extinctions’. (Eds P. S. Martin and R. G. Klein.) pp. 600–628. (University of Arizona Press: Tucson, AZ.)

Murray P. (1991). The Pleistocene megafauna of Australia. In ‘Vertebrate Palaeontology of Australasia’. (Eds P. V. Rich, J. M. Monghan, R. Baird and T. H. Rich.) pp. 1071–1164. (Pioneer Design Studio, Monash University: Melbourne.)

Myers, T. J. (2001). Marsupial body mass prediction. Australian Journal of Zoology 49, 99–118.
Crossref | GoogleScholarGoogle Scholar | Rensch B. (1960). ‘Evolution above the Species Level.’ (Columbia University Press: New York.)

Reynolds, P. S. (2002). How big is a giant? The importance of method in estimating body size of extinct mammals. Journal of Mammalogy 83, 321–332.
Crossref | GoogleScholarGoogle Scholar | Strahan R. (1995). ‘Mammals of Australia.’ (Smithsonian Institution Press: Washington, DC.)

Tedford, R. H. , and Wells, R. T. (1990). Pleistocene deposits and fossil vertebrates from the “Dead Heart of Australia”. Memoirs of the Queensland Museum 28, 263–284.


Thompson, S. D. , MacMillen, R. E. , Burke, E. M. , and Taylor, C. R. (1980). The energetic cost of bipedal hopping in small mammals. Nature 287, 223–224.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Trueman, C. N. G. , Field, J. H. , Dortch, J. , Charles, B. , and Wroe, S. (2005). Prolonged coexistence of humans and megafauna in Pleistocene Australia. Proceedings of the National Academy of Sciences of the United States of America 102, 8381–8385.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Webster, K. N. , and Dawson, T. J. (2004). Is the energetics of mammalian hopping locomotion advantageous in arid environments? Australian Mammalogy 26, 153–160.


Wells, R. T. , and Tedford, R. H. (1995). Sthenurus (Macropodidae, Marsupialia) from the Pleistocene of Lake Callabonna, South Australia. Bulletin of the American Museum of Natural History 225, 1–111.


Willows-Munro, S. , Robinson, T. J. , and Matthee, C. A. (2005). Utility of nuclear DNA intron markers at lower taxonomic levels: phylogenetic resolution among nine Tragelaphus spp. Molecular Phylogenetics and Evolution 35, 624–636.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wroe, S. (2002). A review of terrestrial mammalian and reptilian carnivore ecology in Australian fossil faunas, and factors influencing their biodiversity: the myth of reptilian domination and its broader ramifications. Australian Journal of Zoology 50, 1–24.
Crossref | GoogleScholarGoogle Scholar |

Wroe, S. , Myers, T. , Wells, R. T. , and Gillespie, A. (1999). Estimating the mass of the Pleistocene marsupial lion, Thylacoleo carnifex (Thylacoleonidae: Marsupialia): implications for the ecomorphology of a marsupial super-predator and hypothesis of impoverishment of Australian marsupial carnivore faunas. Australian Journal of Zoology 47, 489–498.
Crossref | GoogleScholarGoogle Scholar |

Wroe, S. , Myers, T. , Seebacher, F. , Kear, B. , and Gillespie, A. (2003). An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Paleobiology 29, 403–411.
Crossref | GoogleScholarGoogle Scholar |

Wroe, S. , Crowther, M. , Dortch, J. , and Chong, J. (2004). The size of the largest marsupial and why it matters. Proceedings of the Royal Society of London. Series B. Biological Sciences 271(Suppl.), S34–S36.
Crossref | GoogleScholarGoogle Scholar |





Appendix 1.  Specimens of extant macropodid species included in the regression analysis
AM M = Australian Museum (Sydney); C = Museum Victoria (Melbourne); SAM M = South Australian Museum (Adelaide)
A1



Appendix 2.  Registration numbers and femoral circumferences (c) for fossil specimens studied
(sa) = subadult (distal epiphysis of femur unfused); AM F = Australian Museum vertebrate palaeontology collection (Sydney); AMNH = American Museum of Natural History paleontology collection (New York); FUCN = Flinders University palaeontology collection (Adelaide); NMV P = Museum of Victoria palaeontology collection (Melbourne); SA = South Australia; SAM P = South Australian Museum palaeontology collection (Adelaide); UCMP = University of California Museum of Paleontology collection (Berkeley)
Click to zoom