Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Occupancy modelling reveals a highly restricted and fragmented distribution in a threatened montane frog (Philoria kundagungan) in subtropical Australian rainforests

Liam J. Bolitho https://orcid.org/0000-0001-6109-3704 A F , Jodi J. L. Rowley B C , Harry B. Hines D E and David Newell https://orcid.org/0000-0003-0419-057X A
+ Author Affiliations
- Author Affiliations

A Forest Research Centre, Southern Cross University, Lismore, NSW 2480, Australia.

B Australian Museum Research Institute, Australian Museum, Sydney, NSW 2010, Australia.

C Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

D Queensland Parks and Wildlife Service and Partnerships, Department of Environment and Science, Bellbowrie, Qld 4070, Australia.

E Biodiversity Program, Queensland Museum, South Brisbane, Qld 4101, Australia.

F Corresponding author. Email: liam.bolitho@scu.edu.au

Australian Journal of Zoology 67(4) 231-240 https://doi.org/10.1071/ZO20037
Submitted: 25 May 2020  Accepted: 15 December 2020   Published: 6 January 2021

Abstract

In the last several decades, habitat loss, overexploitation, invasive organisms, disease, pollution and, more recently, climate change have led to catastrophic declines in amphibian biodiversity. Montane amphibian species, particularly those with narrow distributions and specific habitat requirements are likely to be at particular risk under future climate change scenarios. Despite this, fundamental ecological data are lacking for most of these species. Philoria kundagungan is a poorly known representative of a range-restricted genus of montane amphibians from eastern Australia. Using an occupancy framework, we conducted repeated call playback surveys at 32 sites across the mountainous regions of south-east Queensland and north-eastern New South Wales, Australia, to investigate: (1) the current extent of this species’ geographic range, and (2) environmental predictors of this species’ presence. We found that P. kundagungan has a highly restricted and fragmented distribution, being limited to ~11 km2 of potentially suitable habitat, and that its presence is strongly associated with high elevation (>800 m). Our survey protocol resulted in a high probability of detection (>70%) at occupied sites from relatively few visits. From these baseline data, future studies will have the ability to determine changes in this species’ geographic range and occupancy rate in response to the ever-increasing threats faced by P. kundagungan, thereby supporting more effective conservation strategies and policy decisions.

Keywords: climate change, geographic range, habitat preference, montane amphibians, occupancy modelling, Philoria kundagungan, subtropical rainforest, threatened species.


References

Adams, M. J., Miller, D. A. W., Muths, E., Corn, P. S., Grant, E. H. C., Bailey, L. L., Fellers, G. M., Fisher, R. N., Sadinski, W. J., Waddle, H., and Walls, S. C. (2013). Trends in amphibian occupancy in the United States. PLoS One 8, e64347.
Trends in amphibian occupancy in the United States.Crossref | GoogleScholarGoogle Scholar | 23717602PubMed |

Alexander, J. M., Chalmandrier, L., Lenoir, J., Burgess, T. I., Essl, F., Haider, S., Kueffer, C., McDougall, K., Milbau, A., Nuñez, M. A., Pauchard, A., Rabitsch, W., Rew, L. J., Sanders, N. J., and Pellissier, L. (2018). Lags in the response of mountain plant communities to climate change. Global Change Biology 24, 563–579.
Lags in the response of mountain plant communities to climate change.Crossref | GoogleScholarGoogle Scholar | 29112781PubMed |

Anstis, M. 2017. ‘Tadpoles and Frogs of Australia.’ (New Holland Publishers: Sydney.)

Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., Marshall, C., McGuire, J. L., Lindsey, E. L., Maguire, K. C., Mersey, B., and Ferrer, E. A. (2011). Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57.
Has the Earth’s sixth mass extinction already arrived?Crossref | GoogleScholarGoogle Scholar | 21368823PubMed |

Ceballos, G., Ehrlich, P. R., and Dirzo, R. (2017). Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proceedings of the National Academy of Sciences of the United States of America 114, E6089–E6096.
Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines.Crossref | GoogleScholarGoogle Scholar | 28696295PubMed |

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., and Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024.
Rapid range shifts of species associated with high levels of climate warming.Crossref | GoogleScholarGoogle Scholar | 21852500PubMed |

Collins, J. P., and Halliday, T. (2005). Forecasting changes in amphibian biodiversity: aiming at a moving target. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 309–314.
Forecasting changes in amphibian biodiversity: aiming at a moving target.Crossref | GoogleScholarGoogle Scholar | 15856554PubMed |

Department of Agriculture, Water and the Environment (DAWE) (2019). , .
| 33394035PubMed |

Department of Agriculture, Water and the Environment (DAWE) (2020). Fire 2019–20 species traits frogs. Available at: https://www.environment.gov.au/system/files/pages/a8d10ce5-6a49-4fc2-b94d-575d6d11c547/files/a5fire2019-20speciestraitsfrogs20200209for-web.xlsx [accessed 4 March 2020].

Enriquez-Urzelai, U., Bernardo, N., Moreno-Rueda, G., Montori, A., and Llorente, G. (2019). Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians. Climatic Change 154, 289–301.
Are amphibians tracking their climatic niches in response to climate warming? A test with Iberian amphibians.Crossref | GoogleScholarGoogle Scholar |

Evans, J. P., Ji, F., Lee, C., Smith, P., Argüeso, D., and Fita, L. (2014). Design of a regional climate modelling projection ensemble experiment – NARCliM. Geoscientific Model Development 7, 621–629.
Design of a regional climate modelling projection ensemble experiment – NARCliM.Crossref | GoogleScholarGoogle Scholar |

Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J. C., Akçakaya, H. R., Angulo, A., DeVantier, L. M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O’Hanlon, S. E., Garnett, S. T., Şekercioğlu, C. H., and Mace, G. M. (2013). Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427.
Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.Crossref | GoogleScholarGoogle Scholar | 23950785PubMed |

Geoscience Australia (2015). Digital Elevation Model (DEM) 25 Metre Grid of Australia derived from LiDAR. Geoscience Australia.

Gillespie, G. R., Roberts, J. D., Hunter, D., Hoskin, C. J., Alford, R. A., Heard, G. W., Hines, H., Lemckert, F., Newell, D., and Scheele, B. C. (2020). Status and priority conservation actions for Australian frog species. Biological Conservation 247, 108543.
Status and priority conservation actions for Australian frog species.Crossref | GoogleScholarGoogle Scholar |

Guillera-Arroita, G., and Lahoz-Monfort, J. J. (2012). Designing studies to detect differences in species occupancy: power analysis under imperfect detection. Methods in Ecology and Evolution 3, 860–869.
Designing studies to detect differences in species occupancy: power analysis under imperfect detection.Crossref | GoogleScholarGoogle Scholar |

Harris, R. M. B., Beaumont, L. J., Vance, T. R., Tozer, C. R., Remenyi, T. A., Perkins-Kirkpatrick, S. E., Mitchell, P. J., Nicotra, A. B., McGregor, S., Andrew, N. R., Letnic, M., Kearney, M. R., Wernberg, T., Hutley, L. B., Chambers, L. E., Fletcher, M. S., Keatley, M. R., Woodward, C. A., Williamson, G., Duke, N. C., and Bowman, D. M. J. S. (2018). Biological responses to the press and pulse of climate trends and extreme events. Nature Climate Change 8, 579–587.
Biological responses to the press and pulse of climate trends and extreme events.Crossref | GoogleScholarGoogle Scholar |

Hisano, M., Searle, E. B., and Chen, H. Y. H. (2018). Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems. Biological Reviews of the Cambridge Philosophical Society 93, 439–456.
Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.Crossref | GoogleScholarGoogle Scholar | 28695682PubMed |

Hu, J., and Riveros-Iregui, D. A. (2016). Life in the clouds: are tropical montane cloud forests responding to changes in climate? Oecologia 180, 1061–1073.
Life in the clouds: are tropical montane cloud forests responding to changes in climate?Crossref | GoogleScholarGoogle Scholar | 26739003PubMed |

Hutley, L. B., Doley, D., Yates, D. J., and Boonsaner, A. (1997). Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog. Australian Journal of Botany 45, 311–329.
Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog.Crossref | GoogleScholarGoogle Scholar |

Ingram, G., and Corben, C. (1975). A new species of Kyarranus (Anura: Leptodactylidae) from Queensland, Australia. Memoirs of the Queensland Museum 17, 335–339.

International Union of Conservation of Nature (IUCN) (2019). IUCN Red List of Threatened Species, 2019. Available at: www.iucnredlist.org [accessed 25 October 2019].

Jones, D. A., Wang, W., and Fawcett, R. (2009). High-quality spatial climate datasets for Australia. Australian Meteorological and Oceanographic Journal 58, 233–248.
High-quality spatial climate datasets for Australia.Crossref | GoogleScholarGoogle Scholar |

Knowles, R., Mahony, M., Armstrong, J., and Donnellan, S. (2004). Systematics of sphagnum frogs of the genus Philoria (Anura: Myobatrachidae) in eastern Australia, with the description of two new species. Records of the Australian Museum 56, 57–74.
Systematics of sphagnum frogs of the genus Philoria (Anura: Myobatrachidae) in eastern Australia, with the description of two new species.Crossref | GoogleScholarGoogle Scholar |

Laurance, W. F., Carolina Useche, D., Shoo, L. P., Herzog, S. K., Kessler, M., Escobar, F., Brehm, G., Axmacher, J. C., Chen, I. C., Gámez, L. A., Hietz, P., Fiedler, K., Pyrcz, T., Wolf, J., Merkord, C. L., Cardelus, C., Marshall, A. R., Ah-Peng, C., Aplet, G. H., del Coro Arizmendi, M., Baker, W. J., Barone, J., Brühl, C. A., Bussmann, R. W., Cicuzza, D., Eilu, G., Favila, M. E., Hemp, A., Hemp, C., Homeier, J., Hurtado, J., Jankowski, J., Kattán, G., Kluge, J., Krömer, T., Lees, D. C., Lehnert, M., Longino, J. T., Lovett, J., Martin, P. H., Patterson, B. D., Pearson, R. G., Peh, K. S. H., Richardson, B., Richardson, M., Samways, M. J., Senbeta, F., Smith, T. B., Utteridge, T. M. A., Watkins, J. E., Wilson, R., Williams, S. E., and Thomas, C. D. (2011a). Global warming, elevational ranges and the vulnerability of tropical biota. Biological Conservation 144, 548–557.
Global warming, elevational ranges and the vulnerability of tropical biota.Crossref | GoogleScholarGoogle Scholar |

Laurance, W. F., Dell, B., Turton, S. M., Lawes, M. J., Hutley, L. B., McCallum, H., Dale, P., Bird, M., Hardy, G., Prideaux, G., Gawne, B., McMahon, C. R., Yu, R., Hero, J. M., Schwarzkopf, L., Krockenberger, A., Douglas, M., Silvester, E., Mahony, M., Vella, K., Saikia, U., Wahren, C. H., Xu, Z., Smith, B., and Cocklin, C. (2011b). The 10 Australian ecosystems most vulnerable to tipping points. Biological Conservation 144, 1472–1480.
The 10 Australian ecosystems most vulnerable to tipping points.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., and Langtimm, C. A. (2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255.
Estimating site occupancy rates when detection probabilities are less than one.Crossref | GoogleScholarGoogle Scholar |

MacKenzie, D. I., Nichols, J. D., Royle, J. A., Pollock, K. H., Bailey, L. L., and Hines, J. E. (2018). ‘Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence.’ (Academic Press: Boston, MA.)

Magurran, A. E., Baillie, S. R., Buckland, S. T., Dick, J. M., Elston, D. A., Scott, E. M., Smith, R. I., Somerfield, P. J., and Watt, A. D. (2010). Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends in Ecology & Evolution 25, 574–582.
Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time.Crossref | GoogleScholarGoogle Scholar |

Mazerolle, M. J., Bailey, L. L., Kendall, W. L., Royle, J. A., Converse, S. J., and Nichols, J. D. (2007). Making great leaps forward: accounting for detectability in herpetological field studies. Journal of Herpetology 41, 672–689.
Making great leaps forward: accounting for detectability in herpetological field studies.Crossref | GoogleScholarGoogle Scholar |

Navas, C. A. (1996). The effect of temperature on the vocal activity of tropical anurans: a comparison of high and low-elevation species. Journal of Herpetology 30, 488–497.
The effect of temperature on the vocal activity of tropical anurans: a comparison of high and low-elevation species.Crossref | GoogleScholarGoogle Scholar |

Newell, D. (2018). An update on frog declines from the forests of subtropical eastern Australia. In ‘Status of Conservation and Decline of Amphibians’. (Eds H. Heatwole, and J. Rowley.) pp. 29–37. (CSIRO Publishing: Melbourne.)

Newell, D., Goldingay, R., and Brooks, L. (2013). Population recovery following decline in an endangered stream-breeding frog (Mixophyes fleayi) from subtropical Australia. PLoS One 8, e58559.
Population recovery following decline in an endangered stream-breeding frog (Mixophyes fleayi) from subtropical Australia.Crossref | GoogleScholarGoogle Scholar | 24339963PubMed |

Oliveira, R. S., Eller, C. B., Bittencourt, P. R. L., and Mulligan, M. (2014). The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates. Annals of Botany 113, 909–920.
The hydroclimatic and ecophysiological basis of cloud forest distributions under current and projected climates.Crossref | GoogleScholarGoogle Scholar | 24759267PubMed |

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., and Dasgupta, P. (2014). Climatic Change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change.

Palomo, I. (2017). Climate change impacts on ecosystem services in high mountain areas: a literature review. Mountain Research and Development 37, 179–187.
Climate change impacts on ecosystem services in high mountain areas: a literature review.Crossref | GoogleScholarGoogle Scholar |

Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37, 637–669.
Ecological and evolutionary responses to recent climate change.Crossref | GoogleScholarGoogle Scholar |

Pérez-Granados, C., Schuchmann, K. L., Ramoni-Perazzi, P., and Marques, M. I. (2020). Calling behaviour of Elachistocleis matogrosso (Anura, Microhylidae) is associated with habitat temperature and rainfall. Bioacoustics 29, 670–683.
Calling behaviour of Elachistocleis matogrosso (Anura, Microhylidae) is associated with habitat temperature and rainfall.Crossref | GoogleScholarGoogle Scholar |

Plenderleith, T. L., Stratford, D., Lollback, G. W., Chapple, D. G., Reina, R. D., and Hero, J. M. (2018). Calling phenology of a diverse amphibian assemblage in response to meteorological conditions. International Journal of Biometeorology 62, 873–882.
Calling phenology of a diverse amphibian assemblage in response to meteorological conditions.Crossref | GoogleScholarGoogle Scholar | 29242979PubMed |

Pounds, J. A., Fogden, M. P. L., and Campbell, J. H. (1999). Biological response to climate change on a tropical mountain. Nature 398, 611–615.
Biological response to climate change on a tropical mountain.Crossref | GoogleScholarGoogle Scholar |

Raxworthy, C. J., Pearson, R. G., Rabibisoa, N., Rakotondrazafy, A. M., Ramanamanjato, J. B., Raselimanana, A. P., Wu, S., Nussbaum, R. A., and Stone, D. A. (2008). Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar. Global Change Biology 14, 1703–1720.
Extinction vulnerability of tropical montane endemism from warming and upslope displacement: a preliminary appraisal for the highest massif in Madagascar.Crossref | GoogleScholarGoogle Scholar |

Scheele, B. C., Legge, S., Blanchard, W., Garnett, S., Geyle, H., Gillespie, G., Harrison, P., Lindenmayer, D., Lintermans, M., Robinson, N., and Woinarski, J. (2019a). Continental-scale assessment reveals inadequate monitoring for threatened vertebrates in a megadiverse country. Biological Conservation 235, 273–278.
Continental-scale assessment reveals inadequate monitoring for threatened vertebrates in a megadiverse country.Crossref | GoogleScholarGoogle Scholar |

Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., Catenazzi, A., De la Riva, I., Fisher, M. C., Flechas, S. V., Foster, C. N., Frías-Álvarez, P., Garner, T. W. J., Gratwicke, B., Guayasamin, J. M., Hirschfeld, M., Kolby, J. E., Kosch, T. A., La Marca, E., Lindenmayer, D. B., Lips, K. R., Longo, A. V., Maneyro, R., McDonald, C. A., Mendelson, J., Palacios-Rodriguez, P., Parra-Olea, G., Richards-Zawacki, C. L., Rödel, M.-O., Rovito, S. M., Soto-Azat, C., Toledo, L. F., Voyles, J., Weldon, C., Whitfield, S. M., Wilkinson, M., Zamudio, K. R., and Canessa, S. (2019b). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463.
Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity.Crossref | GoogleScholarGoogle Scholar | 30923224PubMed |

Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., and Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786.
Status and trends of amphibian declines and extinctions worldwide.Crossref | GoogleScholarGoogle Scholar | 15486254PubMed |

Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., and Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature 546, 73–81.
Future threats to biodiversity and pathways to their prevention.Crossref | GoogleScholarGoogle Scholar | 28569796PubMed |

Van Sluys, M., Marra, R. V., Boquimpani-Freitas, L., and Rocha, C. F. D. (2012). Environmental factors affecting calling behavior of sympatric frog species at an Atlantic rain forest area, southeastern Brazil. Journal of Herpetology 46, 41–46.
Environmental factors affecting calling behavior of sympatric frog species at an Atlantic rain forest area, southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Wells, K. D. (2010). ‘The Ecology and Behavior of Amphibians.’ (University of Chicago Press.)

Willacy, R. J., Mahony, M., and Newell, D. A. (2015). If a frog calls in the forest: bioacoustic monitoring reveals the breeding phenology of the endangered Richmond Range mountain frog (Philoria richmondensis). Austral Ecology 40, 625–633.
If a frog calls in the forest: bioacoustic monitoring reveals the breeding phenology of the endangered Richmond Range mountain frog (Philoria richmondensis).Crossref | GoogleScholarGoogle Scholar |