Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Indiscriminate feeding by an alien population of the spotted-thighed frog (Litoria cyclorhyncha) in southern Australia and potential impacts on native biodiversity

Christine M. Taylor https://orcid.org/0000-0002-1092-6945 A E , Gunnar Keppel A B , Shaun O’Sullivan C , Stefan Peters A , Gregory D. Kerr D and Craig R. Williams C
+ Author Affiliations
- Author Affiliations

A Natural and Built Environments Research Centre, School of Natural and Built Environments, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.

B Biodiversity, Macroecology and Biogeography, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 1, 37077 Göttingen, Germany.

C School of Pharmacy and Medical Sciences, University of South Australia, GPO Box 2471, Adelaide, SA 5001, Australia.

D Nature Glenelg Trust, 24 Clarke Street, Hamilton, Vic. 3300, Australia.

E Corresponding author. Email: taycm008@mymail.unisa.edu.au

Australian Journal of Zoology 67(2) 59-72 https://doi.org/10.1071/ZO19042
Submitted: 25 June 2019  Accepted: 4 March 2020   Published: 9 April 2020

Abstract

Litoria cyclorhyncha (Hylidae) is native to southern Western Australia, but a naturalised population has established on the Eyre Peninsula, South Australia. We investigated the diet of this exotic population to assess potential impacts on biodiversity and ecosystems. Seventy-six frogs were collected from three different habitats and their diet items assigned to parataxonomic units (PU) within orders. Stomach contents were diverse, containing 467 prey items from 19 orders and 135 PU, with extrapolation suggesting a diet of ~200 PU. Shannon diversity estimates of prey items consumed produced different rankings for the three habitats at the PU and order level. Therefore, estimates at the order level may not be representative of the actual diversity of prey items. L. cyclorhyncha consumed mainly arthropods and low numbers of conspecific young frogs, geckos and a juvenile house mouse. This generalist, indiscriminate predatory diet is similar to that of other hylids and implies that the species poses a risk to native biodiversity and ecosystem processes by predation and competition. Therefore, further spread of this species needs to be prevented. Our findings can inform effective policies and management actions to mitigate future impacts of L. cyclorhyncha.

Additional keywords: dietary analysis, generalist predator, hylid frogs, invasive amphibian, localised population, parataxonomic unit (PU).


References

Abe, T., Makino, S. I., and Okochi, I. (2008). Why have endemic pollinators declined on the Ogasawara Islands? Biodiversity and Conservation 17, 1465–1473.
Why have endemic pollinators declined on the Ogasawara Islands?Crossref | GoogleScholarGoogle Scholar |

Andersen, A. N. (1991). ‘The Ants of Southern Australia: a Guide to the Bassian Fauna.’ (CSIRO Publishing: Melbourne.)

Ash, L. R. (1968). The occurrence of Angiostrongylus cantonensis in frogs of New Caledonia with observations on paratenic hosts of metastrongyles. The Journal of Parasitology 54, 432–436.
The occurrence of Angiostrongylus cantonensis in frogs of New Caledonia with observations on paratenic hosts of metastrongyles.Crossref | GoogleScholarGoogle Scholar | 5757723PubMed |

Atlas of Living Australia (ALA) (2017). Occurrence records Litoria cyclorhyncha. Available at: http://biocache.ala.org.au/occurrences/search?q=lsid%3Aurn%3Alsid%3A biodiversity.org.au%3Aafd.taxon%3A1b71d797-a1ef-4588–934d-7243c55ad115&fq=state%3A%22Western+Australia%22&fq=basis_of_record%3A%22PreservedSpecimen%22#tab_mapView [accessed 24 April 2017].

Atlas of Living Australia (ALA) (2020). Species: Limnodynastes tasmaniensis. Available at: https://spatial.ala.org.au/?q=lsid:urn:lsid:biodiversity.org.au:afd.taxon:ac2de3ed-ffb5-4792-b765-0331102d3238 [accessed 8 January 2020].

Bell, B. D., Carver, S., Mitchell, N. J., and Pledger, S. (2004). The recent decline of a New Zealand endemic: how and why did populations of Archey’s frog Leiopelma archeyi crash over 1996–2001? Biological Conservation 120, 189–199.
The recent decline of a New Zealand endemic: how and why did populations of Archey’s frog Leiopelma archeyi crash over 1996–2001?Crossref | GoogleScholarGoogle Scholar |

Bishop, P. (2008). Bell frog populations in New Zealand – good news or bad news? Australian Zoologist 34, 408–413.
Bell frog populations in New Zealand – good news or bad news?Crossref | GoogleScholarGoogle Scholar |

Blackburn, T. M., Essl, F., Evans, T., Hulme, P. E., Jeschke, J. M., Kühn, I., Kumschick, S., Marková, Z., Mrugała, A., Nentwig, W., and Pergl, J. (2014). A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biology 12, e1001850.
A unified classification of alien species based on the magnitude of their environmental impacts.Crossref | GoogleScholarGoogle Scholar | 24802715PubMed |

Boelter, R. A., Kaefer, I. L., Both, C., and Cechin, S. (2012). Invasive bullfrogs as predators in a Neotropical assemblage: what frog species do they eat? Animal Biology 62, 397–408.
Invasive bullfrogs as predators in a Neotropical assemblage: what frog species do they eat?Crossref | GoogleScholarGoogle Scholar |

Bower, D. S., Pickett, E. J., Garnham, J. I., Deboo, M. L., McCurry, M. R., Mengerink, R. M., Mahony, M. J., and Clulow, J. (2014). Diet of a threatened pond frog differs over a small spatial scale. Endangered Species Research 23, 93–98.
Diet of a threatened pond frog differs over a small spatial scale.Crossref | GoogleScholarGoogle Scholar |

Burns, E. L., and Crayn, D. M. (2006). Phylogenetics and evolution of bell frogs (Litoria aurea species-group, Anura: Hylidae) based on mitochondrial ND4 sequences. Molecular Phylogenetics and Evolution 39, 573–579.
Phylogenetics and evolution of bell frogs (Litoria aurea species-group, Anura: Hylidae) based on mitochondrial ND4 sequences.Crossref | GoogleScholarGoogle Scholar | 16384717PubMed |

Cale, D. (1991). The interactions between Litoria moorei (Copland) and Litoria cyclorhynchus (Parker) at their common distributional boundary. M.Sc. Thesis, University of Western Australia, Perth.

Choi, R. T., and Beard, K. H. (2012). Coqui frog invasions change invertebrate communities in Hawaii. Biological Invasions 14, 939–948.
Coqui frog invasions change invertebrate communities in Hawaii.Crossref | GoogleScholarGoogle Scholar |

Christy, M. T., Clark, C. S., Gee, D. E., Vice, D., Vice, D. S., Warner, M. P., Tyrrell, C. L., Rodda, G. H., and Savidge, J. (2007). Recent records of alien anurans on the Pacific island of Guam. Pacific Science 61, 469–483.
Recent records of alien anurans on the Pacific island of Guam.Crossref | GoogleScholarGoogle Scholar |

Clemann, N., and Gillespie, G. R. (2013). National recovery plan for the southern bell frog Litoria raniformis. Department of the Environment, Canberra.

Cogger, H. (2014). ‘Reptiles and Amphibians of Australia.’ 7th edn. (CSIRO Publishing: Melbourne.)

Colwell, R. K. (2013). EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s guide and application. Available at: http://purl.oclc.org/estimates

Crosby, A. W. (1986). ‘Ecological Imperialism: the Biological Expansion of Europe, 900–1900.’ (Cambridge University Press: Cambridge.)

Crossland, M. R., Alford, R. A., and Shine, R. (2009). Impact of the invasive cane toad (Bufo marinus) on an Australian frog (Opisthodon ornatus) depends on minor variation in reproductive timing. Oecologia 158, 625–632.
Impact of the invasive cane toad (Bufo marinus) on an Australian frog (Opisthodon ornatus) depends on minor variation in reproductive timing.Crossref | GoogleScholarGoogle Scholar | 18853191PubMed |

D’Amore, A., Kirby, E., and Hemingway, V. (2009a). Reproductive interference by an invasive species: an evolutionary trap. Herpetological Conservation and Biology 4, 325–330.

D’Amore, A., Kirby, E., and McNicholas, M. (2009b). Invasive species shifts ontogenetic resource partitioning and microhabitat use of a threatened native amphibian. Aquatic Conservation 19, 534–541.
Invasive species shifts ontogenetic resource partitioning and microhabitat use of a threatened native amphibian.Crossref | GoogleScholarGoogle Scholar |

Dahl, K. A., Patterson, W. F., Robertson, A, and Ortmann, A. C. (2017). DNA barcoding significantly improves resolution of invasive lionfish diet in the northern Gulf of Mexico. Biological Invasions 19, 1917–1933.
DNA barcoding significantly improves resolution of invasive lionfish diet in the northern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |

Daly, G. (1996). Some problems in the management of the green and golden bell frog Litoria aurea (Anura: Hylidae) at Coomonderry Swamp on the south coast of New South Wales. Australian Zoologist 30, 233–236.
Some problems in the management of the green and golden bell frog Litoria aurea (Anura: Hylidae) at Coomonderry Swamp on the south coast of New South Wales.Crossref | GoogleScholarGoogle Scholar |

Daly, G. (2014). From rags to riches and back again: fluctuations in the green and golden bell frog Litoria aurea population at Nowra on the south coast of New South Wales. Australian Zoologist 37, 157–172.
From rags to riches and back again: fluctuations in the green and golden bell frog Litoria aurea population at Nowra on the south coast of New South Wales.Crossref | GoogleScholarGoogle Scholar |

David, P., Thébault, E., Anneville, O., Duyck, P.-F., Chapuis, E., and Loeuille, N. (2017). Impacts of invasive species on food webs: a review of empirical data. Advances in Ecological Research 56, 1–60.
Impacts of invasive species on food webs: a review of empirical data.Crossref | GoogleScholarGoogle Scholar |

Department of Sustainability and Environment (DSE) (2013). Advisory list of threatened vertebrate faunas in Victoria. Victorian Government Department of Sustainability and Environment, Melbourne.

Dubois, A., and Frétey, T. (2016). A new nomen for a subfamily of frogs (Amphibia, Anura). Dumerilia 6, 17–23.

Egeter, B., Bishop, P. J., and Robertson, B. C. (2015a). Detecting frogs as prey in the diets of introduced mammals: a comparison between morphological and DNA-based diet analyses. Molecular Ecology Resources 15, 306–316.
Detecting frogs as prey in the diets of introduced mammals: a comparison between morphological and DNA-based diet analyses.Crossref | GoogleScholarGoogle Scholar | 25052066PubMed |

Egeter, B., Robertson, B. C., and Bishop, P. J. (2015b). A synthesis of direct evidence of predation on amphibians in New Zealand, in the context of global invasion biology. Herpetological Review 46, 512–519.

Egeter, B., Roe, C., Peixoto, S., Puppo, P., Easton, L. J., Pinto, J., Bishop, P. J., and Robertson, B. C. (2019). Using molecular diet analysis to inform invasive species management: a case study of introduced rats consuming endemic New Zealand frogs. Ecology and Evolution 9, 5032–5048.
Using molecular diet analysis to inform invasive species management: a case study of introduced rats consuming endemic New Zealand frogs.Crossref | GoogleScholarGoogle Scholar | 31110660PubMed |

Eldredge, L. G. (1988). Case studies of the impacts of introduced animal species on renewable resources in the US-affiliated Pacific islands. University of Guam Marine Laboratory Technical Report No. 88, pp. 118–146.

Emerson, S. B. (1985). Skull shape in frogs: correlations with diet. Herpetologica 41, 177–188.

Farrow, R. (2016). ‘Insects of South-eastern Australia: an Ecological and Behavioural Guide.’ (CSIRO Publishing: Melbourne.)

Ferreira, R. B., Beard, K. H., Choi, R. T., and Pitt, W. C. (2015). Diet of the nonnative greenhouse frog (Eleutherodactylus planirostris) in Maui, Hawaii. Journal of Herpetology 49, 586–593.
Diet of the nonnative greenhouse frog (Eleutherodactylus planirostris) in Maui, Hawaii.Crossref | GoogleScholarGoogle Scholar |

Foden, W. B., Butchart, S. H. M., Stuart, S. N., Vié, J.-C., Akçakaya, H. R., Angulo, A., DeVantier, L. M., Gutsche, A., Turak, E., Cao, L., Donner, S. D., Katariya, V., Bernard, R., Holland, R. A., Hughes, A. F., O’Hanlon, S. E., Garnett, S. T., Şekercioğlu, Ç. H., and Mace, G. M. (2013). Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLoS One 8, e65427.
Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals.Crossref | GoogleScholarGoogle Scholar | 23950785PubMed |

Framenau, V. W., Baehr, B. C., and Zborowski, P. (2014). ‘A Guide to the Spiders of Australia.’ (Reed New Holland Publishers Pty Ltd: London.)

Frogwatch SA (2016). Search surveys Litoria cyclorhyncha (2000–2016). Zoos SA, Department of Environment, Water and Natural Resources, South Australia. Available at: http://www.frogwatchsa.com.au/search-surveys [accessed 11 November 2016].

Frogwatch SA (2020a). Search surveys Eyre Peninsula Litoria cyclorhyncha, Neobatrachus pictus, Limnodynastes tasmaniensis – West (1970–2020). Zoos SA, Department of Environment, Water and Natural Resources, South Australia. Available at: https://www.frogwatchsa.com.au/search-surveys [accessed 12 January 2020].

Frogwatch SA (2020b). Frogs in SA. Zoos SA, Department of Environment, Water and Natural Resources, South Australia. Available at: https://www.frogwatchsa.com.au/learning-resources/frogs-in-sa [accessed 8 January 2020].

Gillespie, G. R., and Clemann, N. (2000). The eastern dwarf tree frog Litoria fallax (Peters) (Anura: Hylidae): a recent introduction to Victoria? Victorian Naturalist 117, 60–62.

Glorioso, B. M., Waddle, J. H., Crockett, M. E., Rice, K. G., and Percival, H. F. (2010). Diet of the invasive Cuban treefrog (Osteopilus septentrionalis) in pine rockland and mangrove habitats in South Florida. Caribbean Journal of Science 46, 346–355.
Diet of the invasive Cuban treefrog (Osteopilus septentrionalis) in pine rockland and mangrove habitats in South Florida.Crossref | GoogleScholarGoogle Scholar |

Goldingay, R. (2008). Conservation of the endangered green and golden bell frog: what contribution has ecological research made since 1996? Australian Zoologist 34, 334–349.
Conservation of the endangered green and golden bell frog: what contribution has ecological research made since 1996?Crossref | GoogleScholarGoogle Scholar |

Gotelli, N. J., and Colwell, R. K. (2011). Estimating species richness. In ‘Biological Diversity: Frontiers in Measurement and Assessment’. (Eds A. Magurran, and B. McGill.) pp. 39–54. (Oxford University Press: New York.)

Gray, S. R., and Becker, N. S. C. (2002). Contaminant flows in urban residential water systems. Urban Water 4, 331–346.
Contaminant flows in urban residential water systems.Crossref | GoogleScholarGoogle Scholar |

Greenlees, M. J., and Shine, R. (2019). Ontogenetic shift in toxicity of invasive cane toads facilitates learned avoidance by native predators. Aquatic Invasions 14, 458–464.
Ontogenetic shift in toxicity of invasive cane toads facilitates learned avoidance by native predators.Crossref | GoogleScholarGoogle Scholar |

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.

Hangay, G., and Zborowski, P. (2010). ‘A Guide to the Beetles of Australia.’ (CSIRO Publishing: Melbourne.)

Hartigan, A., Peacock, L., Rosenwax, A., Phalen, D. N., and Šlapeta, J. (2012). Emerging myxosporean parasites of Australian frogs take a ride with fresh fruit transport. Parasites & Vectors 5, 208.
Emerging myxosporean parasites of Australian frogs take a ride with fresh fruit transport.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., and Yen, A. L. (1989). ‘Worms to Wasps: an Illustrated Guide to Australia’s Terrestrial Invertebrates.’ (Oxford University Press and Museum of Victoria: Melbourne.)

Hayward, M. W. (2009). Conservation management for the past, present and future. Biodiversity and Conservation 18, 765–775.
Conservation management for the past, present and future.Crossref | GoogleScholarGoogle Scholar |

Heard, G. W., Scroggie, M. P., and Malone, B. S. (2012). The life history and decline of the threatened Australian frog, Litoria raniformis. Austral Ecology 37, 276–284.
The life history and decline of the threatened Australian frog, Litoria raniformis.Crossref | GoogleScholarGoogle Scholar |

Heatwole, H., and Rowley, J. J. L. (2018). ‘Status of Conservation and Decline of Amphibians: Australia, New Zealand and Pacific Islands.’ (CSIRO Publishing: Melbourne.)

Heise-Pavlov, S. R., and Longway, L. J. (2011). Diet and dietary selectivity of cane toads (Rhinella marina) in restoration sites: a case study in Far North Queensland, Australia. Ecological Management & Restoration 12, 230–233.
Diet and dietary selectivity of cane toads (Rhinella marina) in restoration sites: a case study in Far North Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Hero, J.-M., Clarke, J., Lemckert, F., Robertson, P., Brown, P., and Meyer, E. (2004). Limnodynastes tasmaniensis. The IUCN Red List of Threatened Species 2004: e.T41166A10408098. Available at: 10.2305/IUCN.UK.2004.RLTS.T41166A10408098.en [accessed 20 January 2020].

Heyer, W., Donnelly, M., McDiarmid, R., Hayek, L., and Foster, M. (1994). ‘Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians.’ (Smithsonian Institution Press: Washington, DC.)

Hodgkison, S., and Hero, J.-M. (2003). Seasonal, sexual and ontogenetic variations in the diet of the ‘declining’ frogs Litoria nannotis, Litoria rheocola and Nyctimystes dayi. Wildlife Research 30, 345–354.
Seasonal, sexual and ontogenetic variations in the diet of the ‘declining’ frogs Litoria nannotis, Litoria rheocola and Nyctimystes dayi.Crossref | GoogleScholarGoogle Scholar |

Huckembeck, S., Loebmann, D., Albertoni, E. F., Hefler, S. M., Oliveira, M. C. L. M., and Garcia, A. M. (2014). Feeding ecology and basal food sources that sustain the paradoxal frog Pseudis minuta: a multiple approach combining stomach content, prey availability, and stable isotopes. Hydrobiologia 740, 253–264.
Feeding ecology and basal food sources that sustain the paradoxal frog Pseudis minuta: a multiple approach combining stomach content, prey availability, and stable isotopes.Crossref | GoogleScholarGoogle Scholar |

Hui, Y. (2015). Diet of five common anurans found in disturbed areas in northern peninsular Malaysia. M.Sc. Thesis, Universiti Sains Malaysia, Malaysia.

Humphries, R. B. (1979). Dynamics of a breeding frog community. Ph.D. Thesis, Australian National University, Canberra.

Janicke, G., and Roberts, J. D. (2010). Litoria cyclorhyncha (spotted-thighed frog) saline habitat. Herpetological Review 41, 199–200.

Khatiwada, J. R., Ghimire, S., Khatiwada, S. P., Paudel, B., Bischof, R., Jiang, J., and Haugaasen, T. (2016). Frogs as potential biological control agents in the rice fields of Chitwan, Nepal. Agriculture, Ecosystems & Environment 230, 307–314.
Frogs as potential biological control agents in the rice fields of Chitwan, Nepal.Crossref | GoogleScholarGoogle Scholar |

Kiesecker, J. M., Blaustein, A. R., and Miller, C. L. (2001). Potential mechanisms underlying the displacement of native red‐legged frogs by introduced bullfrogs. Ecology 82, 1964–1970.
Potential mechanisms underlying the displacement of native red‐legged frogs by introduced bullfrogs.Crossref | GoogleScholarGoogle Scholar |

Klop-Toker, K. L., Valdez, J. W., Stockwell, M. P., Edgar, M. E., Fardell, L., Clulow, S., Clulow, J., and Mahony, M. J. (2018). Assessing host response to disease treatment: how chytrid-susceptible frogs react to increased water salinity. Wildlife Research 44, 648–659.
Assessing host response to disease treatment: how chytrid-susceptible frogs react to increased water salinity.Crossref | GoogleScholarGoogle Scholar |

Knight, C. M., Parris, M. J., and Gutzke, W. H. (2009). Influence of priority effects and pond location on invaded larval amphibian communities. Biological Invasions 11, 1033–1044.
Influence of priority effects and pond location on invaded larval amphibian communities.Crossref | GoogleScholarGoogle Scholar |

Kovács, T., and Török, J. (1997). Determination of minimum sample size to estimate diet diversity in anuran species. The Herpetological Journal 7, 43–47.

Kovács, É. H., Sas, I., Covaciu-Marcov, S. D., Hartel, T., Cupsa, D., and Groza, M. (2007). Seasonal variation in the diet of a population of Hyla arborea from Romania. Amphibia-Reptilia 28, 485–491.
Seasonal variation in the diet of a population of Hyla arborea from Romania.Crossref | GoogleScholarGoogle Scholar |

Kraus, F. (2008). ‘Alien Reptiles and Amphibians: a Scientific Compendium and Analysis.’ (Springer Science and Business Media: Dordrecht, Netherlands.)

Kraus, F. (2015). Impacts from invasive reptiles and amphibians. Annual Review of Ecology, Evolution, and Systematics 46, 75–97.
Impacts from invasive reptiles and amphibians.Crossref | GoogleScholarGoogle Scholar |

Krell, F.-T. (2004). Parataxonomy vs. taxonomy in biodiversity studies – pitfalls and applicability of ‘morphospecies’ sorting. Biodiversity and Conservation 13, 795–812.
Parataxonomy vs. taxonomy in biodiversity studies – pitfalls and applicability of ‘morphospecies’ sorting.Crossref | GoogleScholarGoogle Scholar |

Kremen, C., Colwell, R. K., Erwin, T. L., Murphy, D. D., Noss, R. F., and Sanjayan, M. A. (1993). Terrestrial arthropod assemblages: their use in conservation planning. Conservation Biology 7, 796–808.
Terrestrial arthropod assemblages: their use in conservation planning.Crossref | GoogleScholarGoogle Scholar |

Kupfer, A., Langel, R., Scheu, S., Himstedt, W., and Maraun, M. (2006). Trophic ecology of a tropical aquatic and terrestrial food web: insights from stable isotopes (15N). Journal of Tropical Ecology 22, 469–476.
Trophic ecology of a tropical aquatic and terrestrial food web: insights from stable isotopes (15N).Crossref | GoogleScholarGoogle Scholar |

Labanick, G. M. (1976). Prey availability, consumption and selection in the cricket frog, Acris crepitans (Amphibia, Anura, Hylidae). Journal of Herpetology 10, 293–298.
Prey availability, consumption and selection in the cricket frog, Acris crepitans (Amphibia, Anura, Hylidae).Crossref | GoogleScholarGoogle Scholar |

Littlejohn, M., Robertson, P., Gillespie, G., and Lemckert, F. (2004). Neobatrachus pictus. The IUCN Red List of Threatened Species 2004: e.T41178A10408895. Available at: 10.2305/IUCN.UK.2004.RLTS.T41178A10408895.en [accessed 20 January 2020].

Mahan, R. D., and Johnson, J. R. (2007). Diet of the gray treefrog (Hyla versicolor) in relation to foraging site location. Journal of Herpetology 41, 16–23.
Diet of the gray treefrog (Hyla versicolor) in relation to foraging site location.Crossref | GoogleScholarGoogle Scholar |

Main, A. R. (1965). Frogs of Western Australia. Western Australian Naturalist Club Handbook 8, 1–75.

Main, A. R., Littlejohn, M. J., and Lee, A. K. (1959). Ecology of Australian frogs. In ‘Biogeography and Ecology in Australia’. (Eds A. Keast, R. L. Crocker, and C. S. Christian.) pp. 396–411. (Springer: Netherlands.)

Martin, G. R., Twigg, L. E., and Robinson, D. J. (1996). Comparison of the diet of feral cats from rural and pastoral Western Australia. Wildlife Research 23, 475–484.
Comparison of the diet of feral cats from rural and pastoral Western Australia.Crossref | GoogleScholarGoogle Scholar |

Michael, D. R., and Johnson, G. (2016). Notes on a naturalised population of the eastern dwarf tree frog ‘Litoria fallax’ (Peters) (Anura: Hylidae) in north-east Victoria. Victorian Naturalist 133, 202–203.

Mo, M. (2015). On the ant trail: “blitz-feeding” by the ornate burrowing frog Platyplectrum ornatum (Gray, 1842). Herpetology Notes 8, 281–285.

Morgan, L. A., and Buttemer, W. A. (1996). Predation by the non-native fish Gambusia holbrooki on small Litoria aurea and L. dentata tadpoles. Australian Zoologist 30, 143–149.
Predation by the non-native fish Gambusia holbrooki on small Litoria aurea and L. dentata tadpoles.Crossref | GoogleScholarGoogle Scholar |

Mueller, J. M., and Hellmann, J. J. (2008). An assessment of invasion risk from assisted migration. Conservation Biology 22, 562–567.
An assessment of invasion risk from assisted migration.Crossref | GoogleScholarGoogle Scholar | 18577085PubMed |

National Health and Medical Research Council (NHMRC) (2013). ‘Australian Code for the Care and Use of Animals for Scientific Purposes.’ 8th edn. (National Health and Medical Research Council: Canberra.)

New, T. R. (1992). ‘Introductory Entomology for Australian Students.’ (New South Wales University Press: Sydney.)

O’Dwyer, T. W., Buttemer, W. A., and Priddel, D. M. (2000). Inadvertent translocation of amphibians in the shipment of agricultural produce into New South Wales: its extent and conservation implications. Pacific Conservation Biology 6, 40–45.
Inadvertent translocation of amphibians in the shipment of agricultural produce into New South Wales: its extent and conservation implications.Crossref | GoogleScholarGoogle Scholar |

Oliver, I., and Beattie, A. J. (1993). A possible method for the rapid assessment of biodiversity. Conservation Biology 7, 562–568.
A possible method for the rapid assessment of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Oliver, I., and Beattie, A. J. (1996). Invertebrate morphospecies as surrogates for species: a case study. Conservation Biology 10, 99–109.
Invertebrate morphospecies as surrogates for species: a case study.Crossref | GoogleScholarGoogle Scholar |

Owens, H. (2000). Guidelines for vertebrate surveys in South Australia, using the biological survey of South Australia. Manual of the Department for Environment and Heritage, National Parks and Wildlife SA, Government of South Australia.

Park, K. (2004). Assessment and management of invasive alien predators. Ecology and Society 9, 12.
Assessment and management of invasive alien predators.Crossref | GoogleScholarGoogle Scholar |

Pascal, M., Barré, N., de Garine-Wichatitsky, M., Lorvelec, O., Frétey, T., Brescia, F., and Jourdan, H. (2006). Les peuplements néo-calédoniens de vertébrés: invasions, disparitions. Les espèces envahissantes dans l’archipel néo-calédonien: un risque environnemental et économique majeur. Collection Expertise Collégiale, IRD Editions Paris, France.

Pechenik, J. A. (2010). ‘Biology of the Invertebrates.’ 6th edn. (McGraw-Hill: New York.)

Predavec, M., and Dickman, C. R. (1993). Ecology of desert frogs: a study from southwestern Queensland. In ‘Herpetology in Australia’. (Eds D. Lunney, and D. Ayers.) pp. 159–169. (Royal Zoological Society of New South Wales: Sydney.)

Preston, D. (2010). Litoria caerulea (green treefrog). Saurophagy. Herpetological Review 41, 199..

Pyke, G. (2002). A review of the biology of the southern bell frog Litoria raniformis (Anura: Hylidae). Australian Zoologist 32, 32–48.
A review of the biology of the southern bell frog Litoria raniformis (Anura: Hylidae).Crossref | GoogleScholarGoogle Scholar |

Pyke, G. H., and Miehs, A. (2001). Predation by water skinks (Eulamprus quoyii) on tadpoles and metamorphs of the green and golden bell frog (Litoria aurea). Herpetofauna 31, 99–101.

Pyke, G., and White, A. (2000). Factors influencing predation on eggs and tadpoles of the endangered green and golden bell frog Litoria aurea by the introduced plague minnow Gambusia holbrooki. Australian Zoologist 31, 496–505.
Factors influencing predation on eggs and tadpoles of the endangered green and golden bell frog Litoria aurea by the introduced plague minnow Gambusia holbrooki.Crossref | GoogleScholarGoogle Scholar |

Pyke, G., and White, A. (2001). A review of the biology of the green and golden bell frog Litoria aurea. Australian Zoologist 31, 563–598.
A review of the biology of the green and golden bell frog Litoria aurea.Crossref | GoogleScholarGoogle Scholar |

Pyke, G., White, A., Bishop, P., and Waldman, B. (2002). Habitat-use by the green and golden bell frog Litoria aurea in Australia and New Zealand. Australian Zoologist 32, 12–31.
Habitat-use by the green and golden bell frog Litoria aurea in Australia and New Zealand.Crossref | GoogleScholarGoogle Scholar |

Reilly, B. D., Schlipalius, D. I., Cramp, R. L., Ebert, P. R., and Franklin, C. E. (2013). Frogs and estivation: transcriptional insights into metabolism and cell survival in a natural model of extended muscle disuse. Physiological Genomics 45, 377–388.
Frogs and estivation: transcriptional insights into metabolism and cell survival in a natural model of extended muscle disuse.Crossref | GoogleScholarGoogle Scholar | 23548685PubMed |

Rhymer, J. M., and Simberloff, D. (1996). Extinction by hybridization and introgression. Annual Review of Ecology and Systematics 27, 83–109.
Extinction by hybridization and introgression.Crossref | GoogleScholarGoogle Scholar |

Roberts, J. D. (1978). Redefinition of the Australian leptodactylid frog Neobatrachus pictus Peters. Transactions of the Royal Society of South Australia 102, 97–105.

Roberts, B., and Roberts, J. D. (2012). Litoria moorei (motorbike frog) temperature. Herpetological Review 43, 466–467.

Rowley, J. J., Callaghan, C. T., Cutajar, T., Portway, C., Potter, K., Mahony, S., Trembath, D. F., Flemons, P., and Woods, A. (2019). FrogID: citizen scientists provide validated biodiversity data on frogs of Australia. Herpetological Conservation and Biology 14, 155–170.

Salo, P., Banks, P. B., Dickman, C. R., and Korpimäki, E. (2010). Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey. Ecological Monographs 80, 531–546.
Predator manipulation experiments: impacts on populations of terrestrial vertebrate prey.Crossref | GoogleScholarGoogle Scholar |

Shine, R. (2010). The ecological impact of invasive cane toads (Bufo marinus) in Australia. The Quarterly Review of Biology 85, 253–291.
The ecological impact of invasive cane toads (Bufo marinus) in Australia.Crossref | GoogleScholarGoogle Scholar | 20919631PubMed |

Shine, R. (2014). A review of ecological interactions between native frogs and invasive cane toads in Australia. Austral Ecology 39, 1–16.
A review of ecological interactions between native frogs and invasive cane toads in Australia.Crossref | GoogleScholarGoogle Scholar |

Shine, R., Amiel, J., Munn, A. J., Stewart, M., Vyssotski, A. L., and Lesku, J. A. (2015). Is “cooling then freezing” a humane way to kill amphibians and reptiles? Biology Open 4, 760–763.
Is “cooling then freezing” a humane way to kill amphibians and reptiles?Crossref | GoogleScholarGoogle Scholar | 26015533PubMed |

Slatyer, C., Rosauer, D., and Lemckert, F. (2007). An assessment of endemism and species richness patterns in the Australian Anura. Journal of Biogeography 34, 583–596.
An assessment of endemism and species richness patterns in the Australian Anura.Crossref | GoogleScholarGoogle Scholar |

Smith, B. P. C., Hayasaka, Y., Tyler, M. J., and Williams, B. D. (2004). β-caryophyllene in the skin secretion of the Australian green tree frog, Litoria caerulea: an investigation of dietary sources. Australian Journal of Zoology 52, 521–530.
β-caryophyllene in the skin secretion of the Australian green tree frog, Litoria caerulea: an investigation of dietary sources.Crossref | GoogleScholarGoogle Scholar |

Stockwell, M., Clulow, S., Clulow, J., and Mahony, M. (2008). The impact of the amphibian chytrid fungus Batrachochytrium dendrobatidis on a green and golden bell frog Litoria aurea reintroduction program at the Hunter Wetlands Centre Australia in the Hunter Region of NSW. Australian Zoologist 34, 379–386.
The impact of the amphibian chytrid fungus Batrachochytrium dendrobatidis on a green and golden bell frog Litoria aurea reintroduction program at the Hunter Wetlands Centre Australia in the Hunter Region of NSW.Crossref | GoogleScholarGoogle Scholar |

Stockwell, M. P., Clulow, J., and Mahony, M. J. (2010). Host species determines whether infection load increases beyond disease‐causing thresholds following exposure to the amphibian chytrid fungus. Animal Conservation 13, 62–71.
Host species determines whether infection load increases beyond disease‐causing thresholds following exposure to the amphibian chytrid fungus.Crossref | GoogleScholarGoogle Scholar |

Stuart, Y. E., Campbell, T. S., Hohenlohe, P. A., Reynolds, R. G., Revell, L. J., and Losos, J. B. (2014). Rapid evolution of a native species following invasion by a congener. Science 346, 463–466.
Rapid evolution of a native species following invasion by a congener.Crossref | GoogleScholarGoogle Scholar | 25342801PubMed |

Taigen, T. L., and Pough, F. H. (1983). Prey preference, foraging behaviour, and metabolic characteristics of frogs. American Naturalist 122, 509–520.
Prey preference, foraging behaviour, and metabolic characteristics of frogs.Crossref | GoogleScholarGoogle Scholar |

Taylor, C. M., Keppel, G., Peters, S., Hopkins, G. R., and Kerr, G. D. (2018). Establishment and potential spread of the introduced spotted-thighed frog, Litoria cyclorhyncha (Ranoidea cyclorhynchus), in South Australia. Transactions of the Royal Society of South Australia 142, 86–101.
Establishment and potential spread of the introduced spotted-thighed frog, Litoria cyclorhyncha (Ranoidea cyclorhynchus), in South Australia.Crossref | GoogleScholarGoogle Scholar |

Threlfall, C., Jolley, D., Evershed, N., Goldingay, R., and Buttemer, W. (2008). Do green and golden bell frogs Litoria aurea occupy habitats with fungicidal properties? Australian Zoologist 34, 350–360.
Do green and golden bell frogs Litoria aurea occupy habitats with fungicidal properties?Crossref | GoogleScholarGoogle Scholar |

Thurley, T., and Bell, B. D. (1994). Habitat distribution and predation on a western population of terrestrial Leiopelma (Anura: Leiopelmatidae) in the northern King Country, New Zealand. New Zealand Journal of Zoology 21, 431–436.
Habitat distribution and predation on a western population of terrestrial Leiopelma (Anura: Leiopelmatidae) in the northern King Country, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Tingley, R., Phillips, B. L., and Shine, R. (2011). Establishment success of introduced amphibians increases in the presence of congeneric species. American Naturalist 177, 382–388.
Establishment success of introduced amphibians increases in the presence of congeneric species.Crossref | GoogleScholarGoogle Scholar | 21460547PubMed |

Toledo, L. F., Ribeiro, R. S., and Haddad, C. F. (2007). Anurans as prey: an exploratory analysis and size relationships between predators and their prey. Journal of Zoology 271, 170–177.
Anurans as prey: an exploratory analysis and size relationships between predators and their prey.Crossref | GoogleScholarGoogle Scholar |

Tyler, M. J. (1994). ‘Australian Frogs: a Natural History.’ 2nd edn. (Reed Books: Sydney.)

Tyler, M. J., and Knight, F. (2011). ‘Field Guide to the Frogs of Australia.’ (CSIRO Publishing: Melbourne.)

Waldman, B., Van de Wolfshaar, K. E., Klena, J. D., Andjic, V., Bishop, P. J., and Norman, R. D. B. (2001). Chytridiomycosis in New Zealand frogs. Surveillance 28, 9–11.

Welbourn, W. C., and Young, O. P. (1988). Mites parasitic on spiders, with a description of a new species of Eutrombidium (Acari, Eutrombidiidae). The Journal of Arachnology 16, 373–385.

White, A. W., and Pyke, G. H. (1996). Distribution and conservation status of the green and golden bell frog Litoria aurea in New South Wales. Australian Zoologist 30, 177–189.
Distribution and conservation status of the green and golden bell frog Litoria aurea in New South Wales.Crossref | GoogleScholarGoogle Scholar |

White, A. W., and Pyke, G. H. (2015). Vegetation mounds as over-winter habitat for green and golden bell frogs Litoria aurea. Australian Zoologist 37, 510–516.
Vegetation mounds as over-winter habitat for green and golden bell frogs Litoria aurea.Crossref | GoogleScholarGoogle Scholar |

Wilson, N. J., Seymour, J. E., and Williams, C. R. (2014). Predation of two common native frog species (Litoria ewingi and Crinia signifera) by freshwater invertebrates. Australian Journal of Zoology 62, 483–490.
Predation of two common native frog species (Litoria ewingi and Crinia signifera) by freshwater invertebrates.Crossref | GoogleScholarGoogle Scholar |

Zacharow, M., Barichivich, W. J., and Dodd, C. K. (2003). Using ground-placed PVC pipes to monitor hylid treefrogs: capture biases. Southeastern Naturalist 2, 575–590.
Using ground-placed PVC pipes to monitor hylid treefrogs: capture biases.Crossref | GoogleScholarGoogle Scholar |

Zborowski, P., and Storey, R. (2010). ‘A Field Guide to the Insects in Australia.’ 3rd edn. (Reed New Holland: Sydney.)