Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Population ecology of a cryptic arboreal snake (Hoplocephalus bitorquatus)

Michael B. Shelton orcid.org/0000-0003-4702-6905 A C , Ross L. Goldingay orcid.org/0000-0002-6684-9299 A and Stephen S. Phillips B
+ Author Affiliations
- Author Affiliations

A School of Environment, Science and Engineering, Southern Cross University, Lismore, NSW 2480, Australia.

B Biolink Ecological Consultants, 9 Marshall Street, Uki, NSW 2484, Australia.

C Corresponding author. Email: michaelshelton8@bigpond.com.au

Australian Journal of Zoology 65(6) 383-390 https://doi.org/10.1071/ZO18009
Submitted: 2 February 2018  Accepted: 28 June 2018   Published: 20 July 2018

Abstract

Biologists have traditionally been reluctant to study arboreal snakes due to low rates of capture. Overlooking such taxa can mislead interpretations of population trends for data-deficient species. We used regularly spaced transect searches and standard capture–mark–recapture techniques to describe population structure, growth rates, survival and capture probability in a population of the pale-headed snake (Hoplocephalus bitorquatus) in southern Queensland. We obtained data from 194 captures of 113 individual snakes between 2009 and 2015. Using the Cormack–Jolly–Seber method, we estimated apparent annual survival in subadult snakes at 0.23 ± 0.01 (s.e.) and 0.81 ± 0.08 for adults. Capture probability was estimated at 0.16 ± 0.14 per session in subadult snakes and 0.33 ± 0.06 for adults. Within the red gum forests of our study site, we estimate pale-headed snake density at ~13 ± 7 ha–1. Using von Bertalanffy growth modelling, we predict that snakes reach sexual maturity after about four years and may live for up to 20. Our results suggest that the species is a ‘k’ strategist, characterised by slow maturation and low fecundity. These traits suggest that populations will recover slowly following decline, exacerbating the risk of local extinction.

Additional keywords: capture–mark–recapture, Cormack–Jolly–Seber, Elapidae, population estimate, von Bertalanffy growth modelling.


References

Böhm, M., Williams, R., Bramhall, H. R., McMillan, K. M., Davidson, A. D., Garcia, A., Bland, L. M., Bielby, J., and Collen, B. (2016). Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size. Global Ecology and Biogeography 25, 391–405.
Correlates of extinction risk in squamate reptiles: the relative importance of biology, geography, threat and range size.Crossref | GoogleScholarGoogle Scholar |

Bonnet, X., Pearson, D., Ladyman, M., Lourdais, O., and Bradshaw, D. (2002). ‘Heaven’ for serpents? A mark–recapture study of tiger snakes (Notechis scutatus) on Carnac Island, Western Australia. Austral Ecology 27, 442–450.
‘Heaven’ for serpents? A mark–recapture study of tiger snakes (Notechis scutatus) on Carnac Island, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Brito, J., and Rebelo, R. (2003). Differential growth and mortality affect sexual size dimorphism in Vipera latastei. Copeia 2003, 865–871.
Differential growth and mortality affect sexual size dimorphism in Vipera latastei.Crossref | GoogleScholarGoogle Scholar |

Brown, G. P., Phillips, B. L., and Shine, R. (2011). The ecological impact of invasive cane toads on tropical snakes: field data do not support laboratory-based predictions. Ecology 92, 422–431.
The ecological impact of invasive cane toads on tropical snakes: field data do not support laboratory-based predictions.Crossref | GoogleScholarGoogle Scholar |

Buckland, S. T., Burnham, K. P., and Augustine, N. H. (1997). Model selection: an integral part of inference. Biometrics 53, 603–618.
Model selection: an integral part of inference.Crossref | GoogleScholarGoogle Scholar |

Bureau of Meteorology (2016). Climate averages: Dalby. Commonwealth of Australia, Canberra. Available at: www.bom.gov.au/climate [accessed 27 February 2016].

Burnham, K. P., and Anderson, D. R. (1998). ‘Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach.’ (Springer-Verlag: New York.)

Burnham, K. P., Anderson, D. R., White, G. C., Brownie, C., and Pollock, K. H. (1987). Design and analysis methods for fish survival experiments based on release–recapture. American Fisheries Society, Monograph No. 5.

Cormack, R. M. (1989). Log-linear models for capture–recapture. Biometrics 45, 395–413.
Log-linear models for capture–recapture.Crossref | GoogleScholarGoogle Scholar |

Durso, A. M., Wilson, J. D., and Winne, C. T. (2011). Needles in haystacks: estimating detection probability and occupancy of rare and cryptic snakes. Biological Conservation 144, 1508–1515.
Needles in haystacks: estimating detection probability and occupancy of rare and cryptic snakes.Crossref | GoogleScholarGoogle Scholar |

Fitzgerald, M., Shine, R., and Lemckert, F. (2004). Life history attributes of the threatened Australian snake (Stephen’s banded snake Hoplocephalus stephensii, Elapidae). Biological Conservation 119, 121–128.
Life history attributes of the threatened Australian snake (Stephen’s banded snake Hoplocephalus stephensii, Elapidae).Crossref | GoogleScholarGoogle Scholar |

Fitzgerald, M., Lazell, B., and Shine, R. (2010). Ecology and conservation of the pale-headed snake (Hoplocephalus bitorquatus, Elapidae). Australian Zoologist 35, 283–290.
Ecology and conservation of the pale-headed snake (Hoplocephalus bitorquatus, Elapidae).Crossref | GoogleScholarGoogle Scholar |

Grayson, G. L., Mitchell, N. J., Monks, J. M., Keall, S. N., Wilson, J. N., and Nelson, N. J. (2014). Sex ratio bias and extinction risk in an isolated population of tuatara (Sphenodon punctatus). PLoS One 9, e94214.
Sex ratio bias and extinction risk in an isolated population of tuatara (Sphenodon punctatus).Crossref | GoogleScholarGoogle Scholar |

Hamer, A. J., and Mahony, M. J. (2007). Life history of an endangered amphibian challenges the declining species paradigm. Australian Journal of Zoology 55, 79–88.
Life history of an endangered amphibian challenges the declining species paradigm.Crossref | GoogleScholarGoogle Scholar |

Hyslop, N. L., Stevenson, D. J., Macey, J. N., Carlile, L. D., Jenkins, C. L., Hostetler, J. A., and Oli, M. K. (2012). Survival and population growth of a long-lived threatened snake species, Drymarchon couperi. PLoS One 54, 145–156.

Kaufmann, K. W. (1981). Fitting and using growth curves. Oecologia 49, 293–299.
Fitting and using growth curves.Crossref | GoogleScholarGoogle Scholar |

King, R. B., Queral-Regil, A., and Stanford, K. M. (2006). Population size and recovery criteria of the threatened Lake Erie watersnake: integrating multiple methods of population estimation. Herpetological Monograph 20, 83–104.
Population size and recovery criteria of the threatened Lake Erie watersnake: integrating multiple methods of population estimation.Crossref | GoogleScholarGoogle Scholar |

Lazell, B. (2000). The successful breeding of the pale-headed snake Hoplocephalus bitorquatus (Jan 1859). Herpetofauna 30, 18–21.

Lebreton, J.-D., Burnham, K. P., Clobert, J., and Anderson, D. R. (1992). Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies. Ecological Monographs 62, 67–118.
Modeling survival and testing biological hypotheses using marked animals: a unified approach with case studies.Crossref | GoogleScholarGoogle Scholar |

Madsen, T., and Shine, R. (2000). Silver spoons and snake body sizes: prey availability early in life influences long-term growth rates of free-ranging pythons. Journal of Animal Ecology 69, 952–958.
Silver spoons and snake body sizes: prey availability early in life influences long-term growth rates of free-ranging pythons.Crossref | GoogleScholarGoogle Scholar |

Phillips, B. L., Brown, G. P., and Shine, R. (2003). Assessing the potential impacts of cane toads on Australian snakes. Conservation Biology 17, 1738–1747.
Assessing the potential impacts of cane toads on Australian snakes.Crossref | GoogleScholarGoogle Scholar |

Pike, D. A., Brown, L., Pike, B. A., and Shine, R. (2008). Estimating survival rates of uncatchable animals: the myth of high juvenile mortality in reptiles. Ecology 89, 607–611.
Estimating survival rates of uncatchable animals: the myth of high juvenile mortality in reptiles.Crossref | GoogleScholarGoogle Scholar |

Pollock, K. H., Nicholls, J. D., Brownie, C., and Hines, J. E. (1990). Statistical inference for capture–recapture experiments. Wildlife Monographs 107, 1–97.

Purvis, A., Gittleman, J. L., Cowlishaw, G., and Mace, G. M. (2000). Predicting extinction risk in declining species. Biological Sciences 267, 1947–1952.

R Development Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.R-project.org.

Sattler, P., and Williams, R. (1999). The conservation status of Queensland’s bioregional ecosystems. Environmental Protection Agency, Brisbane.

Sewell, D., Baker, J. M. R., and Griffiths, R. A. (2015). Population dynamics of grass snakes (Natrix natrix) at a site restored for amphibian reintroduction. The Herpetological Journal 25, 155–161.

Shine, R. (1983). Arboreality in snakes: ecology of the Australian elapid genus Hoplocephalus. Copeia 1983, 198–205.
Arboreality in snakes: ecology of the Australian elapid genus Hoplocephalus.Crossref | GoogleScholarGoogle Scholar |

Shine, R., and Charnov, E. L. (1992). Patterns of survival, growth, and maturation in snakes and lizards. American Naturalist 139, 1257–1269.
Patterns of survival, growth, and maturation in snakes and lizards.Crossref | GoogleScholarGoogle Scholar |

Slip, D. J., and Shine, R. (1988). Habitat use, movements and activity patterns of free-ranging diamond pythons, Morelia spilota spilota (Serpentes, Boidae) – a radiotelemetric study. Australian Wildlife Research 15, 515–531.
Habitat use, movements and activity patterns of free-ranging diamond pythons, Morelia spilota spilota (Serpentes, Boidae) – a radiotelemetric study.Crossref | GoogleScholarGoogle Scholar |

Stanford, K., and King, R. (2004). Growth, survival, and reproduction in a northern Illinois population of the plains gartersnake, Thamnophis radix. Copeia 2004, 465–478.
Growth, survival, and reproduction in a northern Illinois population of the plains gartersnake, Thamnophis radix.Crossref | GoogleScholarGoogle Scholar |

UBCBBM (2016). VertNet. University of British Columbia Beaty Biodiversity Museum. Available at: http://portal.vertnet.org [accessed 26 April 2016].

von Bertalanffy, L. (1957). Quantitative laws in metabolism and growth. The Quarterly Review of Biology 32, 217–231.
Quantitative laws in metabolism and growth.Crossref | GoogleScholarGoogle Scholar |

Webb, J. K., and Shine, R. (1998a). Using thermal ecology to predict retreat-site selection by an endangered snake species (Hoplocephalus bungaroides: Serpentes, Elapidae). Biological Conservation 86, 233–242.
Using thermal ecology to predict retreat-site selection by an endangered snake species (Hoplocephalus bungaroides: Serpentes, Elapidae).Crossref | GoogleScholarGoogle Scholar |

Webb, J. K., and Shine, R. (1998b). Ecological characteristics of a threatened snake species, Hoplocephalus bungaroides (Serpentes, Elapidae). Animal Conservation 1, 185–193.
Ecological characteristics of a threatened snake species, Hoplocephalus bungaroides (Serpentes, Elapidae).Crossref | GoogleScholarGoogle Scholar |

Webb, J. K., and Whiting, M. J. (2005). Why don’t small snakes bask? Juvenile broad-headed snakes trade thermal benefits for safety. Oikos 110, 515–522.
Why don’t small snakes bask? Juvenile broad-headed snakes trade thermal benefits for safety.Crossref | GoogleScholarGoogle Scholar |

Webb, J. K., Brook, B. W., and Shine, R. (2002). What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes. Ecological Research 17, 59–67.
What makes a species vulnerable to extinction? Comparative life-history traits of two sympatric snakes.Crossref | GoogleScholarGoogle Scholar |

Wedekind, C. (2002). Manipulating sex ratios for conservation: short-term risks and long-term benefits. Animal Conservation 5, 13–20.
Manipulating sex ratios for conservation: short-term risks and long-term benefits.Crossref | GoogleScholarGoogle Scholar |

White, G. C., and Burnham, K. P. (1999). Program MARK: survival estimation from populations of marked animals. Bird Study 46, S120–S139.
Program MARK: survival estimation from populations of marked animals.Crossref | GoogleScholarGoogle Scholar |

Wilson, D., Heinsohn, R., and Wood, J. (2006). Life-history traits and ontogenetic colour change in an arboreal tropical python, Morelia viridis. Australian Journal of Zoology 270, 399–407.
Life-history traits and ontogenetic colour change in an arboreal tropical python, Morelia viridis.Crossref | GoogleScholarGoogle Scholar |