Multiple molecular markers reinforce the systematic framework of unique Australian cave fishes (Milyeringa : Gobioidei)
Timothy J. Page A B I , Mark I. Stevens C D I , Mark Adams C E F , Ralph Foster C , Alejandro Velasco-Castrillón C and William F. Humphreys E G HA Australian Rivers Institute, Nathan Campus, Griffith University, 170 Kessels Road, Nathan, Qld 4111, Australia.
B Water Planning Ecology, Department of Environment and Science, 41 Boggo Road, Dutton Park, Qld 4102, Australia.
C South Australian Museum, GPO Box 234, Adelaide, SA 5001, Australia.
D School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
E School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia.
F Institute for Applied Ecology, University of Canberra, Canberra, ACT 2617, Australia.
G Western Australian Museum, Welshpool DC, WA 6986, Australia.
H School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia.
I Corresponding authors. Email: penguintim@hotmail.com; mark.stevens@samuseum.sa.gov.au
Australian Journal of Zoology 66(2) 115-127 https://doi.org/10.1071/ZO18008
Submitted: 31 January 2018 Accepted: 3 September 2018 Published: 24 September 2018
Abstract
Australia was once thought to be a biodiversity desert when considering the subterranean world; however, recent work has revealed a fascinating collection of cave creatures, many with surprising biogeographic histories. This has especially been so in the karstic regions of north-western Australia (Cape Range peninsula, Barrow Island, Pilbara), which is home not only to a diverse collection of subterranean invertebrates, but also to the continent’s only known underworld-adapted vertebrates, which includes the cave fish in the genus Milyeringa. These cave gudgeons have recently been in a state of taxonomic flux, with species being both split and lumped, but this was done with limited data (incomplete geographic sampling and no nuclear DNA sequence data). Therefore, we have revisited the systematic status of Milyeringa in a total-evidence molecular approach by integrating all existing data (mitochondrial, allozymes) with new DNA sequences from nuclear and mitochondrial loci and new multilocus allozyme data. Our conclusion, that there are two species, matches the most recent taxonomic treatment, with Milyeringa veritas present on both the eastern and western sides of the Cape Range peninsula, and Milyeringa justitia on Barrow Island. This has implications for future research in the linked fields of biogeography and conservation.
Additional keywords: allozymes, Barrow Island, Cape Range peninsula, DNA sequences, Milyeringa brooksi, Milyeringa justitia, Milyeringa veritas, molecular taxonomy.
References
Adams, M., and Humphreys, W. F. (1993). Patterns of genetic diversity within selected subterranean fauna of the Cape Range Peninsula, Western Australia: systematic and biogeographic implications. Records of the Western Australian Museum , 145–164.Adams, M., Raadik, T. A., Burridge, C. P., and Georges, A. (2014). Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room? Systematic Biology 63, 518–533.
| Global biodiversity assessment and hyper-cryptic species complexes: more than one species of elephant in the room?Crossref | GoogleScholarGoogle Scholar |
Arévalo, E., Davis, S. K., and Sites, J. W. (1994). Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of Sceloporus grammicus complex (Phrynosomatidae) in central Mexico. Systematic Biology 43, 387–418.
| Mitochondrial DNA sequence divergence and phylogenetic relationships among eight chromosome races of Sceloporus grammicus complex (Phrynosomatidae) in central Mexico.Crossref | GoogleScholarGoogle Scholar |
Barr, T. C., and Holsinger, J. R. (1985). Speciation in cave faunas. Annual Review of Ecology and Systematics 16, 313–337.
| Speciation in cave faunas.Crossref | GoogleScholarGoogle Scholar |
Bichuette, M. E., and Trajano, E. (2010). Conservation of subterranean fishes. In ‘The Biology of Subterranean Fishes’. (Eds M. E. Bichuette, and B. G. Kapoor.) pp. 65–80. (CRC Press: Enfield, USA.)
Chakrabarty, P. (2010). Status and phylogeny of Milyeringidae (Teleostei: Gobiiformes), with the description of a new blind cave-fish from Australia, Milyeringa brooksi, n. sp. Zootaxa 2557, 19–28.
Chakrabarty, P., Davis, M. P., and Sparks, J. S. (2012). The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites. PLoS One 7, e44083.
| The first record of a trans-oceanic sister-group relationship between obligate vertebrate troglobites.Crossref | GoogleScholarGoogle Scholar |
Cobolli Sbordoni, M. C., Mattoccia, M., La Rosa, G., De Matthaeis, E., and Sbordoni, V. (1990). Secondary sympatric occurence of sibling species of subterranean shrimps in the Karst. International Journal of Speleology 19, 9–27.
| Secondary sympatric occurence of sibling species of subterranean shrimps in the Karst.Crossref | GoogleScholarGoogle Scholar |
Collins, L. B., and Stevens, A. (2010). Assessment of coastal groundwater and linkages with Ningaloo Reef – final report February 2010, WAMSI Node 3 Project 3.10. Western Australian Marine Science Institution (WAMSI), Perth.
Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., and Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics 22, 195–203.
| Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Haloniscus) from the Yilgarn region of Western Australia.Crossref | GoogleScholarGoogle Scholar |
Dasmahapatra, K. K., Elias, M., Hill, R. I., Hoffman, J. I., and Mallet, J. (2010). Mitochondrial DNA barcoding detects some species that are real, and some that are not. Molecular Ecology Resources 10, 264–273.
| Mitochondrial DNA barcoding detects some species that are real, and some that are not.Crossref | GoogleScholarGoogle Scholar |
de Bruyn, M., Stelbrink, B., Page, T. J., Phillips, M. J., Lohman, D. J., Albrecht, C, Hall, R, von Rintelen, K, Ng, P. K. L., Shih, H.-T., Carvalho, G. R., and von Rintelen, T (2013). Time and space in biogeography: response to Parenti & Ebach (2013). Journal of Biogeography 40, 2204–2206.
| Time and space in biogeography: response to Parenti & Ebach (2013).Crossref | GoogleScholarGoogle Scholar |
Delić, T., Trontelj, P., Rendoš, M., and Fišer, C. (2017). The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Scientific Reports 7, 3391.
| The importance of naming cryptic species and the conservation of endemic subterranean amphipods.Crossref | GoogleScholarGoogle Scholar |
Department of Parks and Wildlife W.A. (2014). Threatened fauna (Schedule 1 of the Wildlife Conservation (Specially Protected Fauna) Notice 2014. Department of Parks and Wildlife (W.A.), Perth.
Eberhard, S. M., Halse, S. A., and Humphreys, W. F. (2005). Stygofauna in the Pilbara region, north-west Western Australia: a review. Journal of the Royal Society of Western Australia 88, 167–176.
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32, 1792–1797.
| MUSCLE: multiple sequence alignment with high accuracy and high throughput.Crossref | GoogleScholarGoogle Scholar |
Hamilton-Smith, E. (2001). Maintenance of karst biodiversity, with an emphasis upon Australian populations. Records of the Western Australian Museum , 85–95.
| Maintenance of karst biodiversity, with an emphasis upon Australian populations.Crossref | GoogleScholarGoogle Scholar |
Hammer, M. P., Adams, M., and Hughes, J. M. (2013). Evolutionary processes and biodiversity. In ‘Ecology of Australian Freshwater Fishes’. (Eds P. Humphreys, and K. F. Walker.) pp. 49–79. (CSIRO Publishing: Melbourne.)
Harvey, M. S., Berry, O., Edward, K. L., and Humphreys, G. (2008). Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia. Invertebrate Systematics 22, 167–194.
| Molecular and morphological systematics of hypogean schizomids (Schizomida: Hubbardiidae) in semiarid Australia.Crossref | GoogleScholarGoogle Scholar |
Harvey, M. S., Rix, M. G., Framenau, V. W., Hamilton, Z. R., Johnson, M. S., Teale, R. J., Humphreys, G, and Humphreys, W. F. (2011). Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics 25, 1–10.
| Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes.Crossref | GoogleScholarGoogle Scholar |
Hubert, N., Hanner, R., Holm, E., Mandrak, N. E., Taylor, E., Burridge, M, Watkinson, D, Dumont, P, Curry, A, Bentzen, P, Zhang, J, April, J, and Bernatchez, L (2008). Identifying Canadian freshwater fishes through DNA barcodes. PLoS One 3, e2490.
| Identifying Canadian freshwater fishes through DNA barcodes.Crossref | GoogleScholarGoogle Scholar |
Humphreys, W. F. (1999). Physico-chemical profile and energy fixation in Bundera Sinkhole, an anchialine remiped habitat in north-west Australia. Journal of the Royal Society of Western Australia 82, 89–98.
Humphreys, W. F. (2001a). Milyeringa veritas (Eleotridae), a remarkably versatile cave fish from the arid tropics of northwestern Australia. Environmental Biology of Fishes 62, 297–313.
| Milyeringa veritas (Eleotridae), a remarkably versatile cave fish from the arid tropics of northwestern Australia.Crossref | GoogleScholarGoogle Scholar |
Humphreys, W. F. (2001b). The subterranean fauna of Barrow Island, northwestern Australia, and its environment. Memoires de Biospeologie 28, 107–127.
Humphreys, W. F. (2011). Management of groundwater species in karst environments. In ‘Karst Management’. (Ed. P. van Beynen.) pp. 283–318. (Springer Verlag: Berlin.)
Humphreys, W. F. (2012). Diversity patterns in Australia. In ‘Encyclopedia of Caves’. 2nd edn. (Eds W. B. White and D. C. Culver.) pp. 203–219. (Academic Press: Chennai, India.)
Humphreys, W. F. (2017). Australasian subterranean biogeography. In ‘Handbook of Australasian Biogeography’. (Ed. M. C. Ebach.) pp. 269–293. (CRC Press: Boca Raton, FL.)
Humphreys, W. F., and Adams, M. (1991). The subterranean aquatic fauna of the North West Cape Peninsula, Western Australia. Records of the Western Australian Museum 15, 383–411.
Humphreys, G., Alexander, J., Harvey, M. S., and Humphreys, W. F. (2013). The subterranean fauna of Barrow Island, northwestern Australia: 10 years on. Records of the Western Australian Museum , 145–158.
| The subterranean fauna of Barrow Island, northwestern Australia: 10 years on.Crossref | GoogleScholarGoogle Scholar |
Inoue, J. G., Miya, M., Tsukamoto, K., and Nishida, M. (2001). A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences. Molecular Phylogenetics and Evolution 20, 275–285.
| A mitogenomic perspective on the basal teleostean phylogeny: resolving higher-level relationships with longer DNA sequences.Crossref | GoogleScholarGoogle Scholar |
Javidkar, M., Cooper, S. J. B., King, R. A., Humphreys, W. F., Bertozzi, T., Stevens, M. I., and Austin, A. D. (2016). Molecular systematics and biodiversity of oniscidean isopods in the groundwater calcretes of central Western Australia. Molecular Phylogenetics and Evolution 104, 83–98.
| Molecular systematics and biodiversity of oniscidean isopods in the groundwater calcretes of central Western Australia.Crossref | GoogleScholarGoogle Scholar |
Juan, C., Guzik, M. T., Jaume, D., and Cooper, S. J. B. (2010). Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era. Molecular Ecology 19, 3865–3880.
| Evolution in caves: Darwin’s ‘wrecks of ancient life’ in the molecular era.Crossref | GoogleScholarGoogle Scholar |
Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Paabo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196–6200.
| Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Crossref | GoogleScholarGoogle Scholar |
Kuang, T, Tornabene, L, Li, J, Jiang, J, Chakrabarty, P, Sparks, J. S., Naylor, G. J. P., and Li, C (2018). Phylogenomic analysis on the exceptionally diverse fish clade Gobioidei (Actinopterygii: Gobiiformes) and data-filtering based on molecular clocklikeness. Molecular Phylogenetics and Evolution 128, 192–202.
Lara, A., Ponce de Leon, J. L., Rodriguez, R., Casane, D., Cote, G., Bernatchez, L, and García‐Machado, E (2010). DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts. Molecular Ecology Resources 10, 421–430.
| DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts.Crossref | GoogleScholarGoogle Scholar |
Larson, H. K., Foster, R., Humphreys, W. F., and Stevens, M. I. (2013). A new species of the blind cave gudgeon Milyeringa (Gobioidei, Eleotridae, Butinae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley. Zootaxa 3616, 135–150.
| A new species of the blind cave gudgeon Milyeringa (Gobioidei, Eleotridae, Butinae) from Barrow Island, Western Australia, with a redescription of M. veritas Whitley.Crossref | GoogleScholarGoogle Scholar |
Li, H., He, Y., Jiang, J., Liu, Z., and Li, C. (2018). Molecular systematics and phylogenetic analysis of Asian endemic freshwater sleepers (Gobiiformes: Odontobutidae). Molecular Phylogenetics and Evolution 121, 1–11.
| Molecular systematics and phylogenetic analysis of Asian endemic freshwater sleepers (Gobiiformes: Odontobutidae).Crossref | GoogleScholarGoogle Scholar |
López, J. A., Chen, W. J., and Ortí, G. (2004). Esociform phylogeny. Copeia , 449–464.
| Esociform phylogeny.Crossref | GoogleScholarGoogle Scholar |
Ma, L., and Zhao, Y. H. (2012). Cavefish of China. In ‘Encyclopedia of Caves’. 2nd edn. (Eds W. B. White and D. C. Culver.) pp. 107–125. (Academic Press: Waltham, MA.)
McDowall, R. M., and Stevens, M. I. (2007). Taxonomic status of the Tarndale bully Gobiomorphus alpinus (Teleostei: Eleotridae), revisited – again. Journal of the Royal Society of New Zealand 37, 15–29.
| Taxonomic status of the Tarndale bully Gobiomorphus alpinus (Teleostei: Eleotridae), revisited – again.Crossref | GoogleScholarGoogle Scholar |
Michel, C., Hicks, B. J., Stolting, K. N., Clarke, A. C., Stevens, M. I., Tana, R, Meyer, A, and van den Heuvel, M. R. (2008). Distinct migratory and non-migratory ecotypes of an endemic New Zealand eleotrid (Gobiomorphus cotidianus) – implications for incipient speciation in island freshwater fish species. BMC Evolutionary Biology 8, 49.
| Distinct migratory and non-migratory ecotypes of an endemic New Zealand eleotrid (Gobiomorphus cotidianus) – implications for incipient speciation in island freshwater fish species.Crossref | GoogleScholarGoogle Scholar |
Moore, G. I., Humphreys, W. F., and Foster, R. (2018). New populations of the rare subterranean blind cave eel Ophisternon candidum (Synbranchidae) reveal recent historical connections throughout north-western Australia. Marine and Freshwater Research , .
| New populations of the rare subterranean blind cave eel Ophisternon candidum (Synbranchidae) reveal recent historical connections throughout north-western Australia.Crossref | GoogleScholarGoogle Scholar |
Page, T. J., and Hughes, J. M. (2010). Comparing the performance of multiple mitochondrial genes in the analysis of Australian freshwater fishes. Journal of Fish Biology 77, 2093–2122.
| Comparing the performance of multiple mitochondrial genes in the analysis of Australian freshwater fishes.Crossref | GoogleScholarGoogle Scholar |
Page, T. J., and Hughes, J. M. (2014). Contrasting insights provided by single and multi-species data in a regional comparative phylogeographic study. Biological Journal of the Linnean Society 111, 554–569.
| Contrasting insights provided by single and multi-species data in a regional comparative phylogeographic study.Crossref | GoogleScholarGoogle Scholar |
Page, T. J., Humphreys, W. F., and Hughes, J. M. (2008). Shrimps Down Under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris). PLoS One 3, e1618.
| Shrimps Down Under: evolutionary relationships of subterranean crustaceans from Western Australia (Decapoda: Atyidae: Stygiocaris).Crossref | GoogleScholarGoogle Scholar |
Page, T. J., Marshall, J. C., and Hughes, J. M. (2012). The world in a grain of sand: evolutionarily relevant, small-scale freshwater bioregions on sub-tropical dune islands. Freshwater Biology 57, 612–627.
| The world in a grain of sand: evolutionarily relevant, small-scale freshwater bioregions on sub-tropical dune islands.Crossref | GoogleScholarGoogle Scholar |
Page, T. J., Sternberg, D., Adams, M., Balcombe, S. R., Cook, B. D., Hammer, M. P., Hughes, J. M., Woods, R. J., and Unmack, P. J. (2017). Accurate systematic frameworks are vital to advance ecological and evolutionary studies, with an example from Australian freshwater fish (Hypseleotris). Marine and Freshwater Research 68, 1199–1207.
| Accurate systematic frameworks are vital to advance ecological and evolutionary studies, with an example from Australian freshwater fish (Hypseleotris).Crossref | GoogleScholarGoogle Scholar |
Page, T. J., Hughes, J. M., Real, K. M., Stevens, M. I., King, R. A., and Humphreys, W. F. (2018). Allegory of a cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales. Marine Biodiversity 48, 1185–1202.
| Allegory of a cave crustacean: systematic and biogeographic reality of Halosbaena (Peracarida: Thermosbaenacea) sought with molecular data at multiple scales.Crossref | GoogleScholarGoogle Scholar |
Palumbi, S. R., Martin, A., Romano, S., McMillan, W. O., Stice, L., and Grabowski, G. (1991). ‘A Simple Fool’s Guide to PCR.’ (University of Hawaii Press: Honolulu.)
Porter, M. L. (2007). Subterranean biogeography: what have we learned from molecular techniques? Journal of Caves and Karst Studies 69, 179–186.
Proudlove, G. (2001). The conservation status of hypogean fishes. Environmental Biology of Fishes 62, 201–213.
| The conservation status of hypogean fishes.Crossref | GoogleScholarGoogle Scholar |
Richardson, B. J., Baverstock, P. R., and Adams, M. (1986). ‘Allozyme Electrophoresis: a Handbook for Animal Systematics and Population Studies.’ (Academic Press: Sydney.)
Romero, A., and Vanselow, P. B. S. (2000). Threatened fishes of the world: Milyeringa veritas Whitley, 1945 (Eleotridae). Environmental Biology of Fishes 57, 36.
| Threatened fishes of the world: Milyeringa veritas Whitley, 1945 (Eleotridae).Crossref | GoogleScholarGoogle Scholar |
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S, Larget, B, Liu, L, Suchard, M. A., and Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542.
| MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.Crossref | GoogleScholarGoogle Scholar |
Stevens, M. I., and Hicks, B. J. (2009). Mitochondrial DNA reveals monophyly of New Zealand’s Gobiomorphus (Teleostei: Eleotridae) amongst a morphological complex. Evolutionary Ecology Research 11, 109–123.
Stevens, M. I., Porco, D., D’Haese, C. A., and Deharveng, L. (2011). Comment on “Taxonomy and the DNA Barcoding Enterprise” by Ebach (2011). Zootaxa 2838, 85–88.
Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
| MEGA6: Molecular Evolutionary Genetics Analysis version 6.0.Crossref | GoogleScholarGoogle Scholar |
Thacker, C. E., and Hardman, M. A. (2005). Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei). Molecular Phylogenetics and Evolution 37, 858–871.
| Molecular phylogeny of basal gobioid fishes: Rhyacichthyidae, Odontobutidae, Xenisthmidae, Eleotridae (Teleostei: Perciformes: Gobioidei).Crossref | GoogleScholarGoogle Scholar |
Thacker, C. E., Satoh, T. P., Katayama, E., Harrington, R. C., Eytan, R. I., and Near, T. J. (2015). Molecular phylogeny of Percomorpha resolves Trichonotus as the sister lineage to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei. Molecular Phylogenetics and Evolution 93, 172–179.
| Molecular phylogeny of Percomorpha resolves Trichonotus as the sister lineage to Gobioidei (Teleostei: Gobiiformes) and confirms the polyphyly of Trachinoidei.Crossref | GoogleScholarGoogle Scholar |
Threatened Species and Ecological Communities Working Group (2016). Policy paper for the implementation of the common assessment method: listing infra-specific taxa. Department of Environment & Energy, Canberra.
Tornabene, L., and Pezold, F. (2011). Phylogenetic analysis of Western Atlantic Bathygobius (Teleostei: Gobiidae). Zootaxa 3042, 27–36.
Unmack, P. J. (2013). Biogeography. In ‘’Ecology of Australian Freshwater Fishes’. (Eds P. Humphreys, and K. F. Walker.) pp. 25–48. (CSIRO Publishing: Melbourne.)
Unmack, P. J., Hammer, M. P., Adams, M., Johnson, J. B., and Dowling, T. E. (2013). The role of continental shelf width in determining freshwater phylogeographic patterns in south-eastern Australian pygmy perches (Teleostei: Percichthyidae). Molecular Ecology 22, 1683–1699.
| The role of continental shelf width in determining freshwater phylogeographic patterns in south-eastern Australian pygmy perches (Teleostei: Percichthyidae).Crossref | GoogleScholarGoogle Scholar |
van den Heuvel, M. R., Michel, C., Stevens, M. I., Clarke, A. C., Stölting, K. N., Hicks, B. J., and Tremblay, L. A. (2007). Monitoring the effects of pulp and paper effluent is restricted in genetically distinct populations of common bully (Gobiomorphus cotidianus). Environmental Science & Technology 41, 2602–2608.
| Monitoring the effects of pulp and paper effluent is restricted in genetically distinct populations of common bully (Gobiomorphus cotidianus).Crossref | GoogleScholarGoogle Scholar |
Vences, M., Rasoloariniaina, J. R., and Riemann, J. C. (2018). A preliminary assessment of genetic divergence and distribution of Malagasy cave fish in the genus Typhleotris (Teleostei: Milyeringidae). Zootaxa 4378, 367–376.
| A preliminary assessment of genetic divergence and distribution of Malagasy cave fish in the genus Typhleotris (Teleostei: Milyeringidae).Crossref | GoogleScholarGoogle Scholar |
Ward, R. D. (2009). DNA barcode divergence among species and genera of birds and fishes. Molecular Ecology Resources 9, 1077–1085.
| DNA barcode divergence among species and genera of birds and fishes.Crossref | GoogleScholarGoogle Scholar |