Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Parotid and mandibular gland secretion by red kangaroos, Macropus rufus, in response to heat stress

A. M. Beal
+ Author Affiliations
- Author Affiliations

School of Biological, Earth and Environmental Science, University of New South Wales, Sydney, NSW 2052, Australia. Email: a.beal@unsw.edu.au

Australian Journal of Zoology 65(1) 45-49 https://doi.org/10.1071/ZO16080
Submitted: 22 November 2016  Accepted: 5 May 2017   Published: 2 June 2017

Abstract

Salivary flow rates from ipsilateral parotid and mandibular glands were measured in conscious red kangaroos over a 70–90-min period during episodes of saliva spreading induced by heat stress. At the onset of saliva spreading, mandibular flow rose rapidly to plateau at 1.12 ± 0.10 mL min–1 for the collection intervals after the first 10 min of licking. Parotid flow increased more slowly and progressively, reaching secretion rates similar to those of the mandibular gland after 40 min of saliva spreading, exceeding mandibular flow after 70 min and showing no indication that it had reached maximum secretion at 90 min of saliva spreading. The ion concentrations of both parotid and mandibular salivas during saliva spreading were similar to those previously reported for parasympathomimetic stimulation. The low osmotic concentration of mandibular saliva relative to plasma (40%) makes it a functionally better evaporative coolant than parotid saliva, which was nearly isosmotic with plasma. The increased production of hydrogen ions associated with the increased secretion of bicarbonate by the parotid gland would tend to offset the respiratory alkalosis due to panting thereby helping to maintain acid/base balance during periods of prolonged heat stress.

Additional keyword: salivation.


References

Antal, J., and Kirilcuk, V. (1969). Dynamics of polypneic salivation in the dog. Pflügers Archiv 308, 25–35.
Dynamics of polypneic salivation in the dog.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M7ot1Cktg%3D%3D&md5=1d20ab9613458ea4bd10d946d6658fe2CAS |

Baginski, E. S., Foa, P. P., and Zak, B. (1967). Microdetermination of inorganic phosphate, phospholipids and total phosphate in biological materials. Clinical Chemistry 13, 326–332.
| 1:CAS:528:DyaF2sXkt12ktb4%3D&md5=b2adc6846882f1144b101296a97be993CAS |

Bartholomew, G. A. (1956). Temperature regulation in the macropod marsupial, Setonix brachyurus. Physiological Zoology 29, 26–40.
Temperature regulation in the macropod marsupial, Setonix brachyurus.Crossref | GoogleScholarGoogle Scholar |

Beal, A. M. (1984). Electrolyte composition of parotid saliva from sodium-replete red kangaroos (Macropus rufus). The Journal of Experimental Biology 111, 225–237.
| 1:CAS:528:DyaL2cXlvVylu7g%3D&md5=d733d1ce276780f4dfdfad10108e4773CAS |

Beal, A. M. (1986). Effects of flow rate, duration of stimulation and mineralocorticoids on the electrolyte concentrations of mandibular saliva from the red kangaroo (Macropus rufus). The Journal of Experimental Biology 126, 315–339.
| 1:CAS:528:DyaL2sXmtFersw%3D%3D&md5=62a7c9e3f1d50b55fc15ef999c2d8120CAS |

Beal, A. M. (1989a). Salivation in the red kangaroo (Macropus rufus) during sympathetic nerve stimulation. Comparative Biochemistry and Physiology Part A: Physiology 92, 495–497.
Salivation in the red kangaroo (Macropus rufus) during sympathetic nerve stimulation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M3ltVarsg%3D%3D&md5=a6beebd354e1e40056f8b1eca499ed80CAS |

Beal, A. M. (1989b). The effect of beta-sympathomimetic stimulation on parotid salivation in red kangaroos (Macropus rufus). Archives of Oral Biology 34, 355–363.
The effect of beta-sympathomimetic stimulation on parotid salivation in red kangaroos (Macropus rufus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXktVWnsr4%3D&md5=48be014d863e9dfb0ecf47f2bbd39812CAS |

Beal, A. M. (1989c). Secretion by the mandibular gland of the red kangaroo (Macropus rufus) during isoprenaline infusion. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 159, 601–608.
Secretion by the mandibular gland of the red kangaroo (Macropus rufus) during isoprenaline infusion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXpt1ehtQ%3D%3D&md5=2d3ac8cd0c49adad9e516ecb5fdcf17fCAS |

Beal, A. M. (1991). The effect of carbonic anhydrase inhibitors on secretion by the parotid and mandibular glands of red kangaroos Macropus rufus. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 161, 611–619.
The effect of carbonic anhydrase inhibitors on secretion by the parotid and mandibular glands of red kangaroos Macropus rufus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xht1GntLg%3D&md5=3c464bcfb7b314934dee08e47a3fff3bCAS |

Beal, A. M. (1995). Mechanisms of fluid and ion secretion by the parotid gland of the kangaroo, Macropus rufus, assessed by administration of transport-inhibiting drugs. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology 165, 396–405.
Mechanisms of fluid and ion secretion by the parotid gland of the kangaroo, Macropus rufus, assessed by administration of transport-inhibiting drugs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlartA%3D%3D&md5=986fa54b98fa42254f1d5fb4cf899b57CAS |

Bentley, P. J. (1960). Evaporative water loss and temperature regulation in the marsupial Setonix brachyurus. Australian Journal of Experimental Biology and Medical Science 38, 301–306.
Evaporative water loss and temperature regulation in the marsupial Setonix brachyurus.Crossref | GoogleScholarGoogle Scholar |

Dawson, T. J. (1969). Temperature regulation and evaporative water loss in the brush-tailed possum, Trichosurus vulpecula. Comparative Biochemistry and Physiology 28, 401–407.
Temperature regulation and evaporative water loss in the brush-tailed possum, Trichosurus vulpecula.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF1M7lsFaguw%3D%3D&md5=1b595da79557d91c7a4f8a9047e5c1fdCAS |

Dawson, T. J. (1973). Thermoregulatory responses of the arid zone kangaroos, Megaleia rufa and Macropus robustus. Comparative Biochemistry and Physiology Part A: Physiology 46, 153–169.
Thermoregulatory responses of the arid zone kangaroos, Megaleia rufa and Macropus robustus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c%2FhsF2gsg%3D%3D&md5=0e0569cae24e78ab7ba2bde466ae78dbCAS |

Dawson, T. J., Denny, M. J. S., and Hulbert, A. J. (1969). Thermal balance of the macropodid marsupial, Macropus eugenii Desmarest. Comparative Biochemistry and Physiology 31, 645–653.
Thermal balance of the macropodid marsupial, Macropus eugenii Desmarest.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c%2Fpt1SksQ%3D%3D&md5=7f79b653d962380c23e785835d1a5de3CAS |

Dawson, T. J., Blaney, C. E., Munn, A. J., Kronkenberger, A., and Maloney, S. K. (2000). Thermoregulation by kangaroos from mesic and arid habitats: influence of temperature on routes of heat loss in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus). Physiological and Biochemical Zoology 73, 374–381.
Thermoregulation by kangaroos from mesic and arid habitats: influence of temperature on routes of heat loss in eastern grey kangaroos (Macropus giganteus) and red kangaroos (Macropus rufus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3cvntFSmug%3D%3D&md5=f58f5c9e885142d30a601786da009dbcCAS |

Györy, A. Z., and Edwards, K. D. G. (1967). Simultaneous titrimetric determination of bicarbonate and titratable acid in urine. Australian Journal of Experimental Biology and Medical Science 45, 141–147.
Simultaneous titrimetric determination of bicarbonate and titratable acid in urine.Crossref | GoogleScholarGoogle Scholar |

Hainsworth, F. R., and Stricker, E. M. (1970). Salivary cooling by rats in the heat. In ‘Physiological and Behavioural Temperature Regulation’. (Eds J. D. Hardy, A. P. Gagge and J. A. J. Stolwijk.) pp. 611–626. (C.C. Thomas: Springfield, IL.)

Hainsworth, F. R., and Stricker, E. M. (1971). Evaporative cooling in the rat; differences between salivary glands as thermoregulatory effectors. Canadian Journal of Physiology and Pharmacology 49, 573–580.
Evaporative cooling in the rat; differences between salivary glands as thermoregulatory effectors.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M3is1ShtA%3D%3D&md5=64178773b232c3dc52c9895f2396dfe6CAS |

Higginbotham, A. C., and Koon, W. E. (1955). Temperature regulation in the Virginia opossum. The American Journal of Physiology 181, 69–71.
| 1:STN:280:DyaG2M%2FnvVeisg%3D%3D&md5=6bd382b2b64e4ff5a523daaac7458ce0CAS |

Kanosue, K., Nakayama, T., Tanaka, H., Yanase, M., and Yasuda, H. (1990). Modes of action of local hypothalamic and skin thermal stimulations on salivary secretion in rats. The Journal of Physiology 424, 459–471.
Modes of action of local hypothalamic and skin thermal stimulations on salivary secretion in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3czmt1egtQ%3D%3D&md5=6beee97b9e966ea2933ce5b47f75bf0eCAS |

Lentle, R. G., Hume, I. D., Kennedy, M. S., Stafford, K. J., Potter, M. A., Springett, B. P., and Haslett, S. (2002). The histology and morphometrics of the major salivary glands of four species of wallabies (Marsupialia: Macropodiae) from Kawau Island. New Zealand Journal of Zoology 257, 403–410.

McManus, J. J. (1969). Temperature regulation in the opossum, Didelphis marsupialis virginiana. Journal of Mammalogy 50, 550–558.
Temperature regulation in the opossum, Didelphis marsupialis virginiana.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3c7jtlCrtw%3D%3D&md5=864379e6ce41c158c7f372ea13ed11ffCAS |

Nakayama, T., Kanosue, K., Tanaka, H., and Kaminaga, T. (1986). Thermally-induced salivary secretion in anaesthesised rats. Pflügers Archiv 406, 351–355.
Thermally-induced salivary secretion in anaesthesised rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL283jt1Clsg%3D%3D&md5=bdba5984ded84ac7f1d3a3b56a84f836CAS |

Needham, A. D. (1982). The role of the cardiovascular system of macropodid marsupials in thermoregulation. Ph.D. Thesis, University of New South Wales, Sydney.

Needham, A. D., Dawson, T. J., and Hales, J. R. S. (1974). Forelimb blood flow and saliva spreading in the thermoregulation of the red kangaroo, Megaleia rufa. Comparative Biochemistry and Physiology Part A: Physiology 49, 555–565.
Forelimb blood flow and saliva spreading in the thermoregulation of the red kangaroo, Megaleia rufa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2M%2FislOkug%3D%3D&md5=cf73154e4c6e56ea8501e0a9b6e1113cCAS |

Roberts, W. W., and Mooney, R. D. (1974). Brain areas controlling thermoregulatory grooming, prone extension, locomotion, and tail vasodilation in rats. Journal of Comparative and Physiological Psychology 86, 470–480.
Brain areas controlling thermoregulatory grooming, prone extension, locomotion, and tail vasodilation in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7gvFKgtA%3D%3D&md5=a711e0b95ca3f666a0639ad41f77c6c8CAS |

Robinson, K. W., and Morrison, P. R. (1957). The reaction to hot atmospheres of various species of Australian marsupial and placental animals. Journal of Cellular and Comparative Physiology 49, 455–478.
The reaction to hot atmospheres of various species of Australian marsupial and placental animals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG1c%2FitlOksQ%3D%3D&md5=7a226f905eee21b9c6de8cc26db5c74eCAS |

Schmidt-Nielsen, K., and Schmidt-Nielsen, B. (1952). Water metabolism in desert animals. Physiological Reviews 32, 135–166.
| 1:CAS:528:DyaG38XkvFarsQ%3D%3D&md5=7be8ce8dcd90edd0a7ba30c58ea7a372CAS |

Seldinger, S. I. (1953). Catheter replacement of the needle in percutaneous arteriography. Acta Radiologica 39, 368–376.
Catheter replacement of the needle in percutaneous arteriography.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaG3s%2Fot1Kjtw%3D%3D&md5=95969adb5a21038a6d301f72468cd8a4CAS |

Tanaka, H., Kanosue, K., Nakayama, T., and Shen, Z.-W. (1986). Grooming, body extension, and vasomotor responses to hypothalamic warming at different ambient temperatures in rats. Physiology & Behavior 38, 145–151.
Grooming, body extension, and vasomotor responses to hypothalamic warming at different ambient temperatures in rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2s%2Fmslymtw%3D%3D&md5=498971e0a3c4af3231978268bbf1c91eCAS |

Yanase, M., Kanosue, K., Yasuda, H., and Tanaka, H. (1991). Salivary secretion and grooming behaviour during heat exposure in freely moving rats. The Journal of Physiology 432, 585–592.
Salivary secretion and grooming behaviour during heat exposure in freely moving rats.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK3MzlvFWrtA%3D%3D&md5=a2a172f9112a7a21a001bbece6c4e848CAS |