Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Larger lizards live longer in the group-living Egernia stokesii

S. K. Pearson A D , S. S. Godfrey B , C. M. Bull A and M. G. Gardner A C
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Flinders University of South Australia, Bedford Park, SA 5042, Australia.

B School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.

C Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

D Corresponding author. Email: sarah.pearson@flinders.edu.au

Australian Journal of Zoology 64(3) 182-191 https://doi.org/10.1071/ZO16024
Submitted: 31 March 2016  Accepted: 8 July 2016   Published: 2 August 2016

Abstract

Animal space use has implications for gene flow, disease dynamics, mating systems and the evolution of sociality. Given recent attention to sociality in reptiles, lizards are an important group for expanding our understanding of animal space use. Lizard space use is commonly investigated within one population over a short period and limited attention has been given to potential predictors of site fidelity. This study evaluated site fidelity in three populations of group-living Egernia stokesii (gidgee skink) between two field surveys separated by almost a decade. Of 43 recaptured lizards, 28 (65%) occupied their original space, and 15 (36%) of those shared their space with the same other lizard or lizards in both surveys. This confirmed long-term site and social bond fidelity in E. stokesii. We found that larger lizards were more likely to be recaptured. Neither body size, individual genetic heterozygosity, nor the availability of refuges strongly predicted whether lizards were recaptured in the same or a different place. The reasons why some lizards stayed in the same space while others moved are yet to be resolved.

Additional keywords: site fidelity, space use.


References

Akaike, H. (1973). Information theory and an extension of the maximum likelihood principle. In ‘Second International Symposium on Information Theory.’ (Eds B. N. Petrov and F. Caski.) pp. 267–281. (Akademinai Kiado.)

Aparicio, J. M., Ortego, J., and Cordero, P. J. (2006). What should we weigh to estimate heterozygosity, alleles or loci? Molecular Ecology 15, 4659–4665.
What should we weigh to estimate heterozygosity, alleles or loci?Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28jkt1GmsA%3D%3D&md5=786efe653e27cad4d9949b822fffd25bCAS | 17107491PubMed |

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2014). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, Series B (Methodological) 57, 289–300.

Börger, L., Dalziel, B. D., and Fryxell, J. M. (2008). Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecology Letters 11, 637–650.
Are there general mechanisms of animal home range behaviour? A review and prospects for future research.Crossref | GoogleScholarGoogle Scholar | 18400017PubMed |

Boyer, N., Réale, D., Marmet, J., Pisanu, B., and Chapuis, J. l. (2010). Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus. Journal of Animal Ecology 79, 538–547.
Personality, space use and tick load in an introduced population of Siberian chipmunks Tamias sibiricus.Crossref | GoogleScholarGoogle Scholar | 20202009PubMed |

Bull, C. M., and Freake, M. J. (1999). Home-range fidelity in the Australian sleepy lizard, Tiliqua rugosa. Australian Journal of Zoology 47, 125–132.
Home-range fidelity in the Australian sleepy lizard, Tiliqua rugosa.Crossref | GoogleScholarGoogle Scholar |

Bull, C. M., Griffith, S. C., Lanham, E. J., and Johnston, G. R. (2000). Recognition of pheromones from group members in a gregarious lizard, Egernia stokesii. Journal of Herpetology 34, 92–99.
Recognition of pheromones from group members in a gregarious lizard, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P. (2002). ‘Model Selection and Multimodel Inference: A Practical Information-theoretic Approach.’ 2nd edn. (Springer-Verlag, Incorporated: New York.)

Burnham, K., Anderson, D., and Huyvaert, K. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65, 23–35.
AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons.Crossref | GoogleScholarGoogle Scholar |

Cézilly, F., Dubois, F., and Pagel, M. (2000). Is mate fidelity related to site fidelity? A comparative analysis in ciconiiforms. Animal Behaviour 59, 1143–1152.
Is mate fidelity related to site fidelity? A comparative analysis in ciconiiforms.Crossref | GoogleScholarGoogle Scholar | 10877893PubMed |

Chapple, D. G., and Keogh, S. J. (2006). Group structure and stability in social aggregations of White’s skink, Egernia whitii. Ethology 112, 247–257.
Group structure and stability in social aggregations of White’s skink, Egernia whitii.Crossref | GoogleScholarGoogle Scholar |

Clobert, J., Massot, M., Lecomte, J., Sorci, G., de Fraipont, M., and Barbault, R. (1994). Determinants of dispersal behavior: the common lizard as a case study. In ‘Lizard Ecology: Historical and Experimental Perspectives’. (Eds L. J. Vitt and E. R. Pianka.) pp. 183–206. (Princeton University Press: Princeton.)

Cogger, H. G. (1983). ‘Reptiles and Amphibians of Australia.’ (AH & AW Reed Pty Ltd.)

Cooper, S. J. B., Bull, C. M., and Gardner, M. G. (1997). Characterization of microsatellite loci from the socially monogamous lizard Tiliqua rugosa using a PCR-based isolation technique. Molecular Ecology 6, 793–795.
Characterization of microsatellite loci from the socially monogamous lizard Tiliqua rugosa using a PCR-based isolation technique.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXls1Wrsb4%3D&md5=5e519c1b5412675689f4b0c0760fb0b2CAS |

Coulon, A. (2010). genhet: an easy‐to‐use R function to estimate individual heterozygosity. Molecular Ecology Resources 10, 167–169.
genhet: an easy‐to‐use R function to estimate individual heterozygosity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ansb4%3D&md5=feeb7a224294252d96ae4eac0a08e56cCAS | 21565003PubMed |

Davis, A. R., Corl, A., Surget-Groba, Y., and Sinervo, B. (2011). Convergent evolution of kin-based sociality in a lizard. Proceedings of the Royal Society B: Biological Sciences 278, 1507–1514.
Convergent evolution of kin-based sociality in a lizard.Crossref | GoogleScholarGoogle Scholar | 20926442PubMed |

Doody, S. J., Burghardt, G. M., and Dinets, V. (2013). Breaking the social–non-social dichotomy: a role for reptiles in vertebrate social behavior research? Ethology 119, 95–103.
Breaking the social–non-social dichotomy: a role for reptiles in vertebrate social behavior research?Crossref | GoogleScholarGoogle Scholar |

Duffield, G. A., and Bull, C. M. (1996). Characteristics of the litter of the gidgee skink, Egernia stokesii. Wildlife Research 23, 337–342.
Characteristics of the litter of the gidgee skink, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Duffield, G. A., and Bull, C. M. (1998). Seasonal and ontogenetic changes in the diet of the Australian skink Egernia stokesii. Herpetologica 54, 414–419.

Duffield, G. A., and Bull, C. M. (2002a). Egernia stokesii (gidgee skink) opportunistic dispersal. Herpetological Review 33, 204–205.

Duffield, G. A., and Bull, C. M. (2002b). Stable aggregations in an Australian lizard, Egernia stokesii. Naturwissenschaften 89, 424–427.
Stable aggregations in an Australian lizard, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xnt1ymsbw%3D&md5=18024f8fc74ddbcc8180eb26fb4752b2CAS | 12435097PubMed |

Ebrahimi, M., Fenner, A. L., Bull, C. M., and Godfrey, S. S. (2015). Long and short term residence in refuge burrows by endangered pygmy bluetongue lizards. Amphibia-Reptilia 36, 119–124.
Long and short term residence in refuge burrows by endangered pygmy bluetongue lizards.Crossref | GoogleScholarGoogle Scholar |

Effenberger, E., and Mouton, P. L. F. N. (2007). Space use in a multi‐male group of the group‐living lizard. Journal of Zoology 272, 202–208.
Space use in a multi‐male group of the group‐living lizard.Crossref | GoogleScholarGoogle Scholar |

Emlen, S. T. (1982). The evolution of helping. I. An ecological constraints model. American Naturalist 119, 29–39.
The evolution of helping. I. An ecological constraints model.Crossref | GoogleScholarGoogle Scholar |

Emlen, S. T. (1995). An evolutionary theory of the family. Proceedings of the National Academy of Sciences of the United States of America 92, 8092–8099.
An evolutionary theory of the family.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvVymsLo%3D&md5=38e73da5ffd8b1896f07094bc997670aCAS | 7667250PubMed |

Emlen, S. T., and Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223.
Ecology, sexual selection, and the evolution of mating systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s3hsFyrtQ%3D%3D&md5=1343997e409289c52b7066f8f4fe0a16CAS | 327542PubMed |

Fernandez-Duque, E. (2015). Social monogamy in wild owl monkeys (Aotus azarae) of Argentina: the potential influences of resource distribution and ranging patterns. American Journal of Primatology 78, 355–371.
| 25931263PubMed |

Gardner, M. G. (2000). A genetic investigation of sociality in the Australian group living lizard Egernia stokesii. Ph.D. Thesis, Flinders University of South Australia, Adelaide.

Gardner, M. G., Cooper, S. J. B., Bull, C. M., and Grant, W. N. (1999). Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure. The Journal of Heredity 90, 301–304.
Isolation of microsatellite loci from a social lizard, Egernia stokesii, using a modified enrichment procedure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs1yktLw%3D&md5=be49bfd695034819c09760affbc38c10CAS |

Gardner, M. G., Bull, C. M., Cooper, J. B., and Duffied, G. A. (2001). Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii. Molecular Ecology 10, 175–183.
Genetic evidence for a family structure in stable social aggregations of the Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvitFOisw%3D%3D&md5=bf2bfc338c858118ddf007ec0713207bCAS | 11251796PubMed |

Gardner, M. G., Bull, C. M., and Cooper, S. J. B. (2002). High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii. Molecular Ecology 11, 1787–1794.
High levels of genetic monogamy in the group-living Australian lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWhtrw%3D&md5=976839224a512a14039976b26964e9ecCAS | 12207728PubMed |

Gardner, M. G., Bull, C. M., Fenner, A., Murray, K., and Donnellan, S. C. (2007). Consistent social structure within aggregations of the Australian lizard, Egernia stokesii across seven disconnected rocky outcrops. Journal of Ethology 25, 263–270.
Consistent social structure within aggregations of the Australian lizard, Egernia stokesii across seven disconnected rocky outcrops.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Godfrey, S. S., Fenner, A. L., Donnellan, S. C., and Bull, C. M. (2012). Fine-scale spatial structuring as an inbreeding avoidance mechanism in the social skink Egernia stokesii. Australian Journal of Zoology 60, 272–277.
Fine-scale spatial structuring as an inbreeding avoidance mechanism in the social skink Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Gardner, M. G., Pearson, S. K., Johnston, G. R., and Schwarz, M. P. (2015). Group living in squamate reptiles: a review for stable aggregations. Biological Reviews , .
Group living in squamate reptiles: a review for stable aggregations.Crossref | GoogleScholarGoogle Scholar | 26052742PubMed |

Godfrey, S. S. (2013). Networks and the ecology of parasite transmission: a framework for wildlife parasitology. International Journal for Parasitology. Parasites and Wildlife 2, 235–245.
Networks and the ecology of parasite transmission: a framework for wildlife parasitology.Crossref | GoogleScholarGoogle Scholar | 24533342PubMed |

Godfrey, S. S., Bull, C. M., Murray, K., and Gardner, M. G. (2006). Transmission mode and distribution of parasites among groups of the social lizard Egernia stokesii. Parasitology Research 99, 223–230.
Transmission mode and distribution of parasites among groups of the social lizard Egernia stokesii.Crossref | GoogleScholarGoogle Scholar | 16541264PubMed |

Godfrey, S. S., Bull, C. M., James, R., and Murray, K. (2009). Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii. Behavioral Ecology and Sociobiology 63, 1045–1056.
Network structure and parasite transmission in a group living lizard, the gidgee skink, Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Godfrey, S. S., Ansari, T. H., Gardner, M. G., Farine, D. R., and Bull, C. M. (2014). A contact-based social network of lizards is defined by low genetic relatedness among strongly connected individuals. Animal Behaviour 97, 35–43.
A contact-based social network of lizards is defined by low genetic relatedness among strongly connected individuals.Crossref | GoogleScholarGoogle Scholar |

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140–1162.
Mating systems, philopatry and dispersal in birds and mammals.Crossref | GoogleScholarGoogle Scholar |

Hurvich, C. M., and Tsai, C.-L. (1989). Regression and time series model selection in small samples. Biometrika 76, 297–307.
Regression and time series model selection in small samples.Crossref | GoogleScholarGoogle Scholar |

Kerr, G. D., and Bull, C. M. (2006). Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa. Behavioral Ecology 17, 380–391.
Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa.Crossref | GoogleScholarGoogle Scholar |

Kerth, G. (2008). Causes and consequences of sociality in bats. Bioscience 58, 737–746.
Causes and consequences of sociality in bats.Crossref | GoogleScholarGoogle Scholar |

Kitchen, A. M., Gese, E. M., Karki, S. M., and Schauster, E. R. (2005). Spatial ecology of swift fox social groups: from group formation to mate loss. Journal of Mammalogy 86, 547–554.
Spatial ecology of swift fox social groups: from group formation to mate loss.Crossref | GoogleScholarGoogle Scholar |

Lanham, E. J. (2001). Group-living in the Australian skink, Egernia stokesii. Ph.D. Thesis, Flinders University of South Australia.

Main, A. R., and Bull, C. M. (1996). Mother–offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii. Animal Behaviour 52, 193–200.
Mother–offspring recognition in two Australian lizards, Tiliqua rugosa and Egernia stokesii.Crossref | GoogleScholarGoogle Scholar |

Mazerolle, M. J. (2015). ‘Model Selection and Multimodel Inference Based on (Q)AIC(c).’ 1.21 edn. (R Foundation for Statistical Computing: Vienna.)

McAlpin, S., Duckett, P., and Stow, A. (2011). Lizards cooperatively tunnel to construct a long-term home for family members. PLoS Biology 6, e19041.
| 1:CAS:528:DC%2BC3MXmt1ejt74%3D&md5=c3fa9283bd9291d8182f0dc2fbbe76caCAS |

Meise, K., Krüger, O., Piedrahita, P., and Trillmich, F. (2013). Site fidelity of male Galápagos sea lions: a lifetime perspective. Behavioral Ecology and Sociobiology 67, 1001–1011.
Site fidelity of male Galápagos sea lions: a lifetime perspective.Crossref | GoogleScholarGoogle Scholar |

Michael, D. R., Cunningham, R. B., and Lindemayer, D. B. (2010). The social elite: habitat heterogeneity, complexity and quality in granite inselbergs influence patterns of aggregation in Egernia striolata (Lygosominae: Scincidae). Austral Ecology 35, 862–870.
The social elite: habitat heterogeneity, complexity and quality in granite inselbergs influence patterns of aggregation in Egernia striolata (Lygosominae: Scincidae).Crossref | GoogleScholarGoogle Scholar |

Moyer, M. A., McCown, J. W., Eason, T. H., and Oli, M. K. (2006). Does genetic relatedness influence space use pattern? A test on Florida black bears. Journal of Mammalogy 87, 255–261.
Does genetic relatedness influence space use pattern? A test on Florida black bears.Crossref | GoogleScholarGoogle Scholar |

O’Connor, D., and Shine, R. (2003). Lizards in ‘nuclear families’: a novel reptilian social system in Egernia saxatilis (Scincidae). Molecular Ecology 12, 743–752.
Lizards in ‘nuclear families’: a novel reptilian social system in Egernia saxatilis (Scincidae).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3s7mtVWnug%3D%3D&md5=26536cb070497ae36739db4c8157880eCAS | 12675829PubMed |

O’Connor, D. E., and Shine, R. (2004). Parental care protects against infanticide in the lizard Egernia saxatilis (Scincidae). Animal Behaviour 68, 1361–1369.
Parental care protects against infanticide in the lizard Egernia saxatilis (Scincidae).Crossref | GoogleScholarGoogle Scholar |

Paull, S. H., Song, S., McClure, K. M., Sackett, L. C., Kilpatrick, A. M., and Johnson, P. T. (2012). From superspreaders to disease hotspots: linking transmission across hosts and space. Frontiers in Ecology and the Environment 10, 75–82.
From superspreaders to disease hotspots: linking transmission across hosts and space.Crossref | GoogleScholarGoogle Scholar | 23482675PubMed |

Peakall, R., and Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Ramos-Fernandez, G., Smith Aguilar, S. E., Schaffner, C. M., Vick, L. G., and Aureli, F. (2013). Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico. PLoS One 8, e62813.
Site fidelity in space use by spider monkeys (Ateles geoffroyi) in the Yucatan peninsula, Mexico.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Wgtrw%3D&md5=ac5a1310748ef09da4525f429144bdacCAS | 23675427PubMed |

Shields, W. M. (1984). Factors affecting nest and site fidelity in Adirondack barn swallows (Hirundo rustica). The Auk 101, 780–789.
Factors affecting nest and site fidelity in Adirondack barn swallows (Hirundo rustica).Crossref | GoogleScholarGoogle Scholar |

Shorey, L., Piertney, S., Stone, J., and Höglund, J. (2000). Fine-scale genetic structuring on Manacus manacus leks. Nature 408, 352–353.
Fine-scale genetic structuring on Manacus manacus leks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVektb8%3D&md5=5615509c7889deb6d8b75dea735b67a8CAS | 11099040PubMed |

Smith, L. M., and Burgoyne, L. A. (2004). Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper. BMC Ecology 4, 4.
Collecting, archiving and processing DNA from wildlife samples using FTA databasing paper.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czpvFaksQ%3D%3D&md5=1d443fabe6eba310bf9ade45bf0c71d2CAS | 15072582PubMed |

Spiegel, O., Leu, S. T., Sih, A., Godfrey, S. S., and Bull, C. M. (2015). When the going gets tough: behavioural type-dependent space use in the sleepy lizard changes as the season dries. Proceedings of the Royal Society B: Biological Sciences 282, 20151768.
When the going gets tough: behavioural type-dependent space use in the sleepy lizard changes as the season dries.Crossref | GoogleScholarGoogle Scholar | 26609082PubMed |

Stacey, P. B., and Ligon, J. D. (1991). The benefits-of-philopatry hypothesis for the evolution of cooperative breeding: variation in territory quality and group size effects. American Naturalist 137, 831–846.
The benefits-of-philopatry hypothesis for the evolution of cooperative breeding: variation in territory quality and group size effects.Crossref | GoogleScholarGoogle Scholar |

Stow, A. J. (2002). Microsatellite loci from the Cunningham’s skink (Egernia cunninghami). Molecular Ecology Notes 2, 256–257.
Microsatellite loci from the Cunningham’s skink (Egernia cunninghami).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWiurg%3D&md5=a29d2eb0f0a7dae00d47defac12222a8CAS |

Stow, A. J., and Sunnucks, P. (2004). High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Molecular Ecology 13, 419–430.
High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FitFCrtQ%3D%3D&md5=290f746e0f92900cb6c1c81238a9f0d0CAS | 14717896PubMed |

Stow, A. J., Sunnucks, P., Briscoe, D. A., and Gardner, M. G. (2001). The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites. Molecular Ecology 10, 867–878.
The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): evidence from allelic and genotypic analyses of microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjvVensbw%3D&md5=2f13f7278569a8177aee34e4520c5588CAS | 11348496PubMed |

Switzer, P. V. (1993). Site fidelity in predictable and unpredictable habitats. Evolutionary Ecology 7, 533–555.
Site fidelity in predictable and unpredictable habitats.Crossref | GoogleScholarGoogle Scholar |

Wartmann, F., Juárez, C., and Fernandez-Duque, E. (2014). Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of northern Argentina. International Journal of Primatology 35, 919–939.
Size, site fidelity, and overlap of home ranges and core areas in the socially monogamous owl monkey (Aotus azarae) of northern Argentina.Crossref | GoogleScholarGoogle Scholar |

Wey, T., Blumstein, D. T., Shen, W., and Jordan, F. (2008). Social network analysis of animal behaviour: a promising tool for the study of sociality. Animal Behaviour 75, 333–344.
Social network analysis of animal behaviour: a promising tool for the study of sociality.Crossref | GoogleScholarGoogle Scholar |

While, G. M., Uller, T., and Wapstra, E. (2009). Within population variation in social strategies characterize the social and mating system of an Australian lizard, Egernia whitii. Austral Ecology 34, 938–949.
Within population variation in social strategies characterize the social and mating system of an Australian lizard, Egernia whitii.Crossref | GoogleScholarGoogle Scholar |

While, G. M., Chapple, D. G., Gardner, M. G., Uller, T., and Whiting, M. J. (2015). Egernia lizards. Current Biology 25, R593–R595.
Egernia lizards.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1KmtLzO&md5=12dff18ada72435ce34267c9e21f1c65CAS | 26196480PubMed |

Wolf, J. B. W., and Trillmich, F. (2008). Kin in space: social viscosity in a spatially and genetically substructured network. Proceedings of the Royal Society B: Biological Sciences 275, 2063–2069.
Kin in space: social viscosity in a spatially and genetically substructured network.Crossref | GoogleScholarGoogle Scholar |

Zhou, Q., Tang, X., Huang, H., and Huang, C. (2011). Factors affecting the ranging behavior of white-headed langurs (Trachypithecus leucocephalus). International Journal of Primatology 32, 511–523.
Factors affecting the ranging behavior of white-headed langurs (Trachypithecus leucocephalus).Crossref | GoogleScholarGoogle Scholar |

Zweifel, R. G., and Lowe, C. H. (1966). The ecology of a population of Xantusia vigilis, the desert night lizard. American Museum Novitates 2247, 1–57.