Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Diversity and phylogeny of south-east Queensland Bathynellacea

John Little A D , Daniel J. Schmidt A , Benjamin D. Cook A B , Timothy J. Page A C and Jane M. Hughes A
+ Author Affiliations
- Author Affiliations

A Australian Rivers Institute, Griffith University, Nathan, Qld 4111, Australia.

B FRC Environmental, PO Box 2363, Wellington Point, Qld 4160, Australia.

C Water Planning Ecology, Queensland Department of Science, Information Technology and Innovation, Dutton Park, Qld 4102, Australia.

D Corresponding author. Email: john.little0001@gmail.com

Australian Journal of Zoology 64(1) 36-47 https://doi.org/10.1071/ZO16005
Submitted: 19 January 2016  Accepted: 29 April 2016   Published: 26 May 2016

Abstract

The crustacean order Bathynellacea is amongst the most diverse and widespread groups of subterranean aquatic fauna (stygofauna) in Australia. Interest in the diversity and biogeography of Australian Bathynellacea has grown markedly in recent years. However, relatively little information relating to this group has emerged from Queensland. The aim of this study was to investigate bathynellacean diversity and phylogeny in south-east Queensland. Relationships between the south-east Queensland fauna and their continental relatives were evaluated through the analysis of combined mitochondrial and nuclear DNA sequence data. Bathynellaceans were collected from alluvial groundwater systems in three catchments in south-east Queensland. This study revealed a diverse bathynellacean fauna with complex evolutionary relationships to related fauna elsewhere in Queensland, and on the wider Australian continent. The multifamily assemblage revealed here is likely to represent several new species, and at least one new genus within the Parabathynellidae. These taxa likely have relatively restricted geographic distributions. Interestingly, the south-east Queensland Bathynellacea appeared to be distantly related to their north-east Queensland counterparts. Although it was not possible to determine the generic identities of their closest relatives, the south-east Queensland Parabathynellidae appear to be most closely affiliated with southern and eastern Australian lineages. Together with previous survey data, the findings here suggest that there is likely to be considerable bathynellacean diversity in alluvial groundwater systems across the wider Queensland region. Further assessment of stygofauna distributions in south-east Queensland is necessary to understand the biological implications of significant groundwater use and development in the region.

Additional keywords: alluvial, Bathynellidae, biogeography, groundwater, Parabathynellidae, stygofauna.


References

Abrams, K. M., Guzik, M. T., Cooper, S. J. B., Humphreys, W. F., King, R. A., Cho, J.-L., and Austin, A. D. (2012). What lies beneath: molecular phylogenetics and ancestral state reconstruction of the ancient subterranean Australian Parabathynellidae (Syncarida, Crustacea). Molecular Phylogenetics and Evolution 64, 130–144.
What lies beneath: molecular phylogenetics and ancestral state reconstruction of the ancient subterranean Australian Parabathynellidae (Syncarida, Crustacea).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rht1Cnuw%3D%3D&md5=b7ed82d52ec99f0788251a8ef04b2cd1CAS | 22465443PubMed |

Abrams, K. M., King, R. A., Guzik, M. T., Cooper, S. J. B., and Austin, A. D. (2013). Molecular phylogenetic, morphological and biogeographic evidence for a new genus of parabathynellid crustaceans (Syncarida: Bathynellacea) from groundwater in an ancient southern Australian landscape. Invertebrate Systematics 27, 146–172.
Molecular phylogenetic, morphological and biogeographic evidence for a new genus of parabathynellid crustaceans (Syncarida: Bathynellacea) from groundwater in an ancient southern Australian landscape.Crossref | GoogleScholarGoogle Scholar |

Asmyhr, M. G., and Cooper, S. J. B. (2012). Difficulties barcoding in the dark: the case of crustacean stygofauna from eastern Australia. Invertebrate Systematics 26, 583–591.
Difficulties barcoding in the dark: the case of crustacean stygofauna from eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvVKqtLrF&md5=1f4be4b633fbedf10013b4ac88398e9fCAS |

Asmyhr, M. G., Hose, G., Graham, P., and Stow, A. J. (2014a). Fine‐scale genetics of subterranean syncarids. Freshwater Biology 59, 1–11.
Fine‐scale genetics of subterranean syncarids.Crossref | GoogleScholarGoogle Scholar |

Asmyhr, M. G., Linke, S., Hose, G., and Nipperess, D. A. (2014b). Systematic conservation planning for groundwater ecosystems using phylogenetic diversity. PLoS One 9, e115132.
Systematic conservation planning for groundwater ecosystems using phylogenetic diversity.Crossref | GoogleScholarGoogle Scholar | 25514422PubMed |

Bouckaert, R., Heled, J., Kühnert, D., Vaughan, T., Wu, C.-H., Xie, D., Suchard, M. A., Rambaut, A., and Drummond, A. J. (2014). BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Computational Biology 10, e1003537.
BEAST 2: a software platform for Bayesian evolutionary analysis.Crossref | GoogleScholarGoogle Scholar | 24722319PubMed |

Calman, W. T. (1904). On the classification of the Crustacea Malacostraca. Annals & Magazine of Natural History 13, 144–158.
On the classification of the Crustacea Malacostraca.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., and Hancock, P. (2010a). A new genus of Parabathynellidae (Crustacea: Bathynellacea) in New South Wales, Australia. Journal of Natural History 44, 1081–1094.
A new genus of Parabathynellidae (Crustacea: Bathynellacea) in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., and Hancock, P. (2010b). First record of Syncarida from Queensland, Australia, with description of two new species of Notobathynella Schminke, 1973 (Crustacea, Bathynellacea, Parabathynellidae). Journal of Natural History 45, 113–135.
First record of Syncarida from Queensland, Australia, with description of two new species of Notobathynella Schminke, 1973 (Crustacea, Bathynellacea, Parabathynellidae).Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., and Hancock, P. (2012). Two new species of the genus Chilibathynella Noodt, 1963 and Onychobathynella bifurcata gen. et sp. nov. (Crustacea: Syncarida: Parabathynellidae) from New South Wales, Australia. Journal of Natural History 46, 145–173.
Two new species of the genus Chilibathynella Noodt, 1963 and Onychobathynella bifurcata gen. et sp. nov. (Crustacea: Syncarida: Parabathynellidae) from New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., and Valdecasas, A. G. (2008). Global diversity of syncarids (Syncarida; Crustacea) in freshwater. Hydrobiologia 595, 257–266.
Global diversity of syncarids (Syncarida; Crustacea) in freshwater.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., Dorda, B. A., and Rey, I. (2011). Identifying cryptic speciation across groundwater populations: first COI sequences of Bathynellidae (Crustacea, Syncarida). Graellsia: revista de zoología 67, 7–12.
Identifying cryptic speciation across groundwater populations: first COI sequences of Bathynellidae (Crustacea, Syncarida).Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., Dorda, B. A., and Rey, I. (2012). Undisclosed taxonomic diversity of Bathynellacea (Malacostraca: Syncarida) in the Iberian Peninsula revealed by molecular data. Journal of Crustacean Biology 32, 816–826.
Undisclosed taxonomic diversity of Bathynellacea (Malacostraca: Syncarida) in the Iberian Peninsula revealed by molecular data.Crossref | GoogleScholarGoogle Scholar |

Camacho, A. I., Newell, R., Crete, Z., Dorda, B., Casado, A., and Rey, I. (2016). Northernmost discovery of Bathynellacea (Syncarida: Bathynellidae) with description of a new species of Pacificabathynella from Alaska (USA). Journal of Natural History 50, 583–602.
Northernmost discovery of Bathynellacea (Syncarida: Bathynellidae) with description of a new species of Pacificabathynella from Alaska (USA).Crossref | GoogleScholarGoogle Scholar |

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540–552.
Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVSgt7g%3D&md5=95c8638f386a963376b3f3fa8de972ecCAS | 10742046PubMed |

Cho, J.-L. (2005). A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn Craton of Western Australia. Journal of Natural History 39, 3423–3433.
A primitive representative of the Parabathynellidae (Bathynellacea, Syncarida) from the Yilgarn Craton of Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cho, J.-L., Park, J.-G., and Humphreys, W. F. (2005). A new genus and six new species of the Parabathynellidae (Bathynellacea, Syncarida) from the Kimberley region, Western Australia. Journal of Natural History 39, 2225–2255.
A new genus and six new species of the Parabathynellidae (Bathynellacea, Syncarida) from the Kimberley region, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Cho, J.-L., Humphreys, W. F., and Lee, S.-D. (2006a). Phylogenetic relationships within the genus Atopobathynella Schminke (Bathynellacea: Parabathynellidae). Invertebrate Systematics 20, 9–41.
Phylogenetic relationships within the genus Atopobathynella Schminke (Bathynellacea: Parabathynellidae).Crossref | GoogleScholarGoogle Scholar |

Cho, J.-L., Park, J.-G., and Reddy, Y. R. (2006b). Brevisomabathynella gen. nov. with two new species from Western Australia (Bathynellacea, Syncarida): the first definitive evidence of predation in Parabathynellidae. Zootaxa 1247, 25–42.

Coineau, N., and Camacho, A. I. (2013). Superorder Syncarida Packard 1885. In ‘Treatise on Zoology – Anatomy, Taxonomy, Biology. The Crustacea’. (Eds J. C. von Vaupel Klein, M. Charmantier-Daires and F. R. Schram.) pp. 357–450. (Brill: Leiden.)

Cook, B., Abrams, K., Marshall, J., Perna, C., Choy, S., Guzik, M. T., and Cooper, S. J. B. (2012). Species diversity and genetic differentiation of stygofauna (Syncarida: Bathynellacea) across an alluvial aquifer in north-eastern Australia. Australian Journal of Zoology 60, 152–158.
Species diversity and genetic differentiation of stygofauna (Syncarida: Bathynellacea) across an alluvial aquifer in north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Dafny, E., and Silburn, D. M. (2014). The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a critical assessment. Hydrogeology Journal 22, 705–727.
The hydrogeology of the Condamine River Alluvial Aquifer, Australia: a critical assessment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlegsrs%3D&md5=04f32b2123f365a1ec9e26b1eda0d602CAS |

Davis, J., Pavlova, A., Thompson, R., and Sunnucks, P. (2013). Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change. Global Change Biology 19, 1970–1984.
Evolutionary refugia and ecological refuges: key concepts for conserving Australian arid zone freshwater biodiversity under climate change.Crossref | GoogleScholarGoogle Scholar | 23526791PubMed |

Department of Natural Resources and Mines (2013). Groundwater risks associated with coal seam gas development in the Surat and southern Bowen basins. Available at: http://www.dnrm.qld.gov.au/__data/assets/pdf_file/0013/106015/act-5-groundwater-risks-report-text.pdf [accessed 11 May 2015].

Doyle, J. J., and Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19, 11–15.

Finston, T., Johnson, M., Humphreys, W. F., Eberhard, S., and Halse, S. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology 16, 355–365.
Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXks1yqsrw%3D&md5=6c8a6ce98bbd99d1a84ad58cf71928daCAS | 17217350PubMed |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 1:CAS:528:DyaK2MXjt12gtLs%3D&md5=2e32175f49760cfedf39c03836608be3CAS | 7881515PubMed |

Furlan, E., Griffiths, J., Gust, N., Handasyde, K., Grant, T., Gruber, B., and Weeks, A. (2013). Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia. Conservation Genetics 14, 837–853.
Dispersal patterns and population structuring among platypuses, Ornithorhynchus anatinus, throughout south-eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVyrtLrI&md5=54cbeccd6259fcb8cf10aaecbf43c085CAS |

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., and Bairoch, A. (2003). ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research 31, 3784–3788.
ExPASy: the proteomics server for in-depth protein knowledge and analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXltVWjtLc%3D&md5=a7da0c368d6cc702a89478243b5f9fcaCAS | 12824418PubMed |

Glanville, K., Schulz, C., Tomlinson, M., and Butler, D. (2016). Biodiversity and biogeography of groundwater invertebrates in Queensland, Australia. Subterranean Biology 17, 55–76.
Biodiversity and biogeography of groundwater invertebrates in Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Grobben, K. (1904). ‘Lehrbuch der Zoologie, Begrundet von C. Claus, Neubearbeitet von Dr Karl Grobben.’ (Publisher unknown: Marburg.)

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=1f7c70e16fe79cabc87d003ff4dca6f0CAS |

Hancock, P. J., and Boulton, A. J. (2008). Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia. Invertebrate Systematics 22, 117–126.
Stygofauna biodiversity and endemism in four alluvial aquifers in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hancock, P. J., and Boulton, A. J. (2009). Sampling groundwater fauna: efficiency of rapid assessment methods tested in bores in eastern Australia. Freshwater Biology 54, 902–917.
Sampling groundwater fauna: efficiency of rapid assessment methods tested in bores in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Harvey, M. S., Rix, M. G., Framenau, V. W., Hamilton, Z. R., Johnson, M. S., Teale, R. J., Humphreys, G., and Humphreys, W. F. (2011). Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes. Invertebrate Systematics 25, 1–10.
Protecting the innocent: studying short-range endemic taxa enhances conservation outcomes.Crossref | GoogleScholarGoogle Scholar |

Humphreys, W. F. (2008). Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective. Invertebrate Systematics 22, 85–101.
Rising from Down Under: developments in subterranean biodiversity in Australia from a groundwater fauna perspective.Crossref | GoogleScholarGoogle Scholar |

Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16, 111–120.
A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtFSktg%3D%3D&md5=948e9897acc433f0998752d569821263CAS | 7463489PubMed |

King, R. A., and Leys, R. (2014). Molecular evidence for mid-Pleistocene divergence of populations of three freshwater amphipod species (Talitroidea: Chiltoniidae) on Kangaroo Island, South Australia, with a new spring-associated genus and species. Australian Journal of Zoology 62, 137–156.
Molecular evidence for mid-Pleistocene divergence of populations of three freshwater amphipod species (Talitroidea: Chiltoniidae) on Kangaroo Island, South Australia, with a new spring-associated genus and species.Crossref | GoogleScholarGoogle Scholar |

Korbel, K. L., Lim, R. P., and Hose, G. C. (2013). An inter-catchment comparison of groundwater biota in the cotton-growing region of north-western New South Wales. Crop and Pasture Science 64, 1195–1208.

Lanfear, R., Calcott, B., Ho, S. Y., and Guindon, S. (2012). PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution 29, 1695–1701.
PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xnt1ehsbg%3D&md5=4e28f81e14ccbf37c60b04dcb713caf0CAS | 22319168PubMed |

McTainsh, G. H., and Boughton, W. C. (1993). Australian environmental change. In ‘Land Degradation Processes in Australia’. (Eds T. Dare-Edwards and G. McTainsh.) pp. 118–145. (Longman-Cheshire: Melbourne.)

Noodt, W. (1963). Estudios sobre Crustaceos de aguas subterraneas, III. Crustacea Syncarida de Chile Central. Investigaciones Zoológicas Chilenas 10, 151–167.

Noodt, W. (1964). Natürliches system und biogeographie der Syncarida (Crustacea Malacostraca. Gewässer und Abwässer 37–38, 77–186.

Oilier, C. (1982). The Great Escarpment of eastern Australia: tectonic and geomorphic significance. Journal of the Geological Society of Australia 29, 13–23.
The Great Escarpment of eastern Australia: tectonic and geomorphic significance.Crossref | GoogleScholarGoogle Scholar |

Ollier, C. (1995). Tectonics and landscape evolution in southeast Australia. Geomorphology 12, 37–44.
Tectonics and landscape evolution in southeast Australia.Crossref | GoogleScholarGoogle Scholar |

Ollier, C., and Pain, C. (1994). Landscape evolution and tectonics in southeastern Australia. Journal of Australian Geology and Geophysics 15, 335–345.

Queensland Water Commission (2012). Underground Water Impact Report for the Surat Cumulative Management Area. Available at: http://www.dnrm.qld.gov.au/ogia/surat-underground-water-impact-report [accessed 20 June 2015].

Rambaut, A., Suchard, M., Xie, D., and Drummond, A. (2014). ‘Tracer v1. 6.’ Computer program and documentation distributed by the authors. Available at: http://beast.bio.ed.ac.uk/tracer [accessed 27 July 2014].

Roure, B., Baurain, D., and Philippe, H. (2013). Impact of missing data on phylogenies inferred from empirical phylogenomic data sets. Molecular Biology and Evolution 30, 197–214.
Impact of missing data on phylogenies inferred from empirical phylogenomic data sets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhvV2gtr3N&md5=e9762638256ea24d3ac08de0614f770dCAS | 22930702PubMed |

Schminke, H. K. (1973). Evolution, system und verbreitungsgeschichte der familie Parabathynellidae (Bathynellacea, Malacostraca). Mikrofauna des Meeresbodens 24, 1–192.

Schminke, H. K. (1974a). Mesozoic intercontinental relationships as evidenced by bathynellid Crustacea (Syncarida: Malacostraca). Systematic Biology 23, 157–164.
Mesozoic intercontinental relationships as evidenced by bathynellid Crustacea (Syncarida: Malacostraca).Crossref | GoogleScholarGoogle Scholar |

Schminke, H. K. (1974b). Psammaspides williamsi gen. n., sp. n., ein Vertreter einer neuen Familie mesopsammaler Anaspidacea (Crustacea, Syncarida). Zoologica Scripta 3, 177–183.
Psammaspides williamsi gen. n., sp. n., ein Vertreter einer neuen Familie mesopsammaler Anaspidacea (Crustacea, Syncarida).Crossref | GoogleScholarGoogle Scholar |

Schminke, H. K. (2014). Freshwater origin of Bathynellacea (Malacostraca). Crustaceana 87, 1225–1242.
Freshwater origin of Bathynellacea (Malacostraca).Crossref | GoogleScholarGoogle Scholar |

Schulz, C., Steward, A., and Prior, A. (2013). Stygofauna presence within fresh and highly saline aquifers of the border rivers region in southern Queensland. Proceedings of the Royal Society of Queensland 118, 27–35.

Serov, P. (2002). A preliminary identification of Australian Syncarida (Crustacea). MDFRC Identification Guide No. 44. CRC Freshwater Ecology, Albury, New South Wales, Australia. Available at: http://www. mdfrc.org.au/bugguide/resources/taxonomy_guides. html.

Simon, C., Frati, F., Beckenbach, A. T., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701.
Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=a3619286e790aa5d040e9047e9930facCAS |

SKM (2008). Fitzroy Basin Water Resource Plan Amendment – Callide Catchment Groundwater Project. Available at: http://www.mackay.qld.gov.au/__data/assets/pdf_file/0019/101746/Callide-Catch-GWater-Project.pdf [accessed 11 May 2014]

Song, H., Buhay, J. E., Whiting, M. F., and Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America 105, 13486–13491.
Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFChs7vP&md5=8dc6a97678b2a7c7f3d7c50f361b8a3fCAS | 18757756PubMed |

Speck, N., Wright, R., Sweeney, F., Perry, R., and Fitzpatrick, E. (1968). Lands of the Dawson-Fitzroy area, Queensland. CSIRO Land Research Series, No. 21.

Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313.
RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXmvFCjsbc%3D&md5=ba74ce91efc98c1fad4645b21990e9b7CAS | 24451623PubMed |

Sundaram, B., and Coram, J. (2009). Groundwater quality in Australia and New Zealand: a literature review. The Australian Government Department of the Environment, Water, Heritage and the Arts. Available at: http://find.ga.gov.au/FIND/metadata-record/uuid/a05f7892-fb4e-7506-e044-00144fdd4fa6 [accessed 20 June 2015].

Tamura, K., Stecher, G., Peterson, D., Filipski, A., and Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 2725–2729.
MEGA6: molecular evolutionary genetics analysis version 6.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhvVKhurzP&md5=cd6e303d82acaee8faf52a547c1cf088CAS | 24132122PubMed |

Thompson, G. M. (1893). Notes on Tasmania crustacea, with description of new species. Papers and Proceedings of the Royal Society of Tasmania, 45–76.

Unmack, P. J. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography 28, 1053–1089.
Biogeography of Australian freshwater fishes.Crossref | GoogleScholarGoogle Scholar |

Vejdovský, F. (1882). ‘Tierische Organismen der Brunnengeswässer von Prague.’ (Prague.)

Whiting, M. F. (2002). Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera. Zoologica Scripta 31, 93–104.
Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera.Crossref | GoogleScholarGoogle Scholar |

Xia, X. (2013). DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Molecular Biology and Evolution 30, 1720–1728.
DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvFersbk%3D&md5=b1c5b559cc5766017c026880f3a4f3c9CAS | 23564938PubMed |

Xia, X., Xie, Z., Salemi, M., Chen, L., and Wang, Y. (2003). An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26, 1–7.
An index of substitution saturation and its application.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xps1WhtrY%3D&md5=93f9fd3274c3b1cea19200593232dbd7CAS | 12470932PubMed |