Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Reconstructed paternal genotypes reveal variable rates of multiple paternity at three rookeries of loggerhead sea turtles (Caretta caretta) in Western Australia

J. N. Tedeschi A B F , N. J. Mitchell A B , O. Berry C , S. Whiting D , M. Meekan B E and W. J. Kennington A
+ Author Affiliations
- Author Affiliations

A School of Animal Biology (M092), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Oceans Institute (M470), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C CSIRO Oceans and Atmosphere Flagship, PMB 5, Floreat, WA 6014, Australia.

D Marine Science Program, Department of Parks and Wildlife, Locked Bag 104, Bentley Delivery Centre, WA 6983, Australia.

E Australian Institute of Marine Science (M096), The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

F Corresponding author. Email: jamie.tedeschi@research.uwa.edu.au

Australian Journal of Zoology 62(6) 454-462 https://doi.org/10.1071/ZO14076
Submitted: 9 September 2014  Accepted: 19 December 2014   Published: 15 January 2015

Abstract

Female sea turtles are promiscuous, with clutches of eggs often sired by multiple males and rates of multiple paternity varying greatly within and across species. We investigated levels of multiple paternity in loggerhead sea turtles (Caretta caretta) from three rookeries in Western Australia by analysing polymorphic species-specific genetic markers. We predicted that the level of multiple paternity would be related to female population size and hence the large rookery at Dirk Hartog Island would have higher rates of multiple paternity than two smaller mainland rookeries at Gnaraloo Bay and Bungelup Beach. Contrary to our prediction, we found highly variable rates of multiple paternity among the rookeries that we sampled, which was unrelated to female population size (25% at Bungelup Beach, 86% at Gnaraloo Bay, and 36% at Dirk Hartog Island). Approximately 45 different males sired 25 clutches and the average number of sires per clutch ranged from 1.2 to 2.1, depending on the rookery sampled. The variance in rates of multiple paternity among rookeries suggests that operational sex ratios are variable in Western Australia. Periodic monitoring would show whether the observed patterns of multiple paternity for these three rookeries are stable over time, and our data provide a baseline for detecting shifts in operational sex ratios.


References

Baldwin, R., Hughes, G. R., and Prince, R. I. T. (2003). Loggerhead turtles in the Indian Ocean. In ‘Loggerhead Sea Turtles’. (Eds B. E. Bolten and A. B. Witherington.) pp. 218–234. (Smithsonian Books: Washington, DC.)

Bollmer, J. L., Irwin, M. E., Rieder, J. P., and Parker, P. G. (1999). Multiple paternity in loggerhead turtle clutches. Copeia 1999, 475–478.
Multiple paternity in loggerhead turtle clutches.Crossref | GoogleScholarGoogle Scholar |

Bowen, B., and Karl, S. (2007). Population genetics and phylogeography of sea turtles. Molecular Ecology , .
Population genetics and phylogeography of sea turtles.Crossref | GoogleScholarGoogle Scholar | 18092992PubMed |

Crim, J. L., Spotila, D., Spotila, J. R., O’Connor, M., Reina, R., Williams, C. J., and Paladino, F. V. (2002). The leatherback turtle, Dermochelys coriacea, exhibits both polyandry and polygyny. Molecular Ecology 16, 4886–4907.

Dutton, P., Bixby, E., and Davis, S. K. (2000). Tendencey towards single paternity in leatherbacks detected with microsatellites. In ‘Proceedings of the Eighteenth International Symposium on Sea Turtle Biology and Conservation’. (Eds F. A. Abreu-Grobois, R. Briseno-Duenas, R. Marquez, and L. Sarti.) p. 39. NOAA Technical Memorandum NMFS-SEFSC-436. Technical Information Service, Springfield, Virginia.

Ekanayake, E. M. L., Kapurusinghe, T., Saman, M. M., Rathnakamura, D. S., Samaraweera, P., Ranawana, K. B., and Rajakaruna, R. S. (2013). Paternity of green turtle (Chelonia mydas) clutches laid in Kosgoda, Sri Lanka. Herpetological Conservation and Biology 8, 27–36.

Fitzsimmons, N. N. (1998). Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology 7, 575–584.
Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3ps1OmtQ%3D%3D&md5=113ead316f686b78b49a916d56ec5584CAS | 9633101PubMed |

Fitzsimmons, N. N., Limpus, C. J., Norman, J. A., Goldizen, A. R., Miller, J. D., and Moritz, C. (1997a). Philopatry of male marine turtles inferred from mitochondrial DNA markers. Proceedings of the National Academy of Sciences of the United States of America 94, 8912–8917.
Philopatry of male marine turtles inferred from mitochondrial DNA markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXltlWhtLg%3D&md5=6be1e55a74d0d2e9ab89c02458f5e575CAS | 9238077PubMed |

Fitzsimmons, N. N., Moritz, C., Limpus, C. J., Pope, L., and Prince, R. (1997b). Geographic structure of mitochondrial and nuclear gene polymorphisms in Australian green turtle populations and male-biased gene flow. Genetics 147, 1843–1854.
| 1:CAS:528:DyaK1cXivFGqsQ%3D%3D&md5=390f9538b1550f4957c6940f286c330eCAS | 9409840PubMed |

Godley, B. J., Broderick, A. C., Fraunstein, R, Glen, F, and Hays, G. C. (2002). Reproductive seasonality and sexual dimorphism in green turtles. Molecular Ecology Progress Series 226, 125–133.
Reproductive seasonality and sexual dimorphism in green turtles.Crossref | GoogleScholarGoogle Scholar |

Harry, J. L., and Briscoe, D. A. (1988). Multiple paternity in the loggerhead turtle (Caretta caretta). The Journal of Heredity 79, 96–99.
| 1:STN:280:DyaL1c3pvFGrug%3D%3D&md5=6f9589d54a79ff6fbfb5343717a88e93CAS | 3403964PubMed |

Hattingh, K., Boureau, M., Duffy, M., and Wall, M. (2011). Gnaraloo Turtle Conservation Program. Gnaraloo Bay Rookery, Final Report, Program 2010/11. Day monitoring program with night checks and crab burrow surveys. 20 July 2011. Gnaraloo Station Trust, Western Australia.

Hawkes, L. A., Broderick, A. C., Godfrey, M. H., Godley, B. J., and Witt, M. J. (2014). The impacts of climate change on marine turtle reproductive success. In ‘Coastal Conservation’. (Eds B. Masalo and J. L. Lockwood.) pp. 287–310. (Cambridge University Press: Cambridge.)

Hays, G. C., Fossette, S., Katselidis, K. A., Schofield, G., and Gravenor, M. B. (2010). Breeding periodicity for male sea turtles, operational sex ratios, and implications in the face of climate change. Conservation Biology 24, 1636–1643.
Breeding periodicity for male sea turtles, operational sex ratios, and implications in the face of climate change.Crossref | GoogleScholarGoogle Scholar | 20497201PubMed |

Hays, G. C., Mazaris, A. D., and Schofield, G. (2014). Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles. Frontiers in Marine Science 1, 1–9.
Different male vs. female breeding periodicity helps mitigate offspring sex ratio skews in sea turtles.Crossref | GoogleScholarGoogle Scholar |

Hoekert, W. E. J., Neuféglise, H., Schouten, A. D., and Menken, S. B. J. (2002). Multiple paternity and female-biased mutation at a mirosatellite locus in the Olive Ridley sea turtle (Lepidochelys olivacea). Heredity 89, 107–113.
Multiple paternity and female-biased mutation at a mirosatellite locus in the Olive Ridley sea turtle (Lepidochelys olivacea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVKqtL8%3D&md5=afca2d57d049b47eb60d1a93268d51b8CAS |

Ireland, J. S., Broderick, A. C., Glen, F., and Godley, B. J. (2003). Multiple paternity assessed using microsatellite markers, in green turtles Chelonia mydas (Linnaeus, 1758) of Ascension Island, south Atlantic. Journal of Experimental Marine Biology and Ecology 291, 149–160.
Multiple paternity assessed using microsatellite markers, in green turtles Chelonia mydas (Linnaeus, 1758) of Ascension Island, south Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXktFWktrg%3D&md5=0e932214a5db4f4ff430828504366f76CAS |

Jensen, M. P., Abreu-Grobois, F. A., Frydenberg, J., and Loeschcke, V. (2006). Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada Olive Ridley sea turtle rookeries. Molecular Ecology 15, 2567–2575.
Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada Olive Ridley sea turtle rookeries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XpvVegt78%3D&md5=be6e29f4694f61919310addde0df2937CAS | 16842427PubMed |

Jensen, M. P., Fitzsimmons, N. N., and Dutton, P. H. (2013). Molecular genetics of sea turtles. In ‘Biology of Sea Turtles. Vol III’. (Eds J. Wyneken, K. J. Lohmann, and J. A. Musick) pp. 155–182. (CRC Press: Boca Raton, FL.)

Jones, A. G. (2005). Gerud 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents. Molecular Ecology Notes 5, 708–711.
Gerud 2.0: a computer program for the reconstruction of parental genotypes from half-sib progeny arrays with known or unknown parents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVOhurrF&md5=e606aa57ac906636b2566119c654c484CAS |

Jones, A. G., Small, C. M., Paczolt, K. A., and Ratterman, N. L. (2010). A practical guide to methods of parentage analysis. Molecular Ecology Resources 10, 6–30.
A practical guide to methods of parentage analysis.Crossref | GoogleScholarGoogle Scholar | 21564987PubMed |

Joseph, J., and Shaw, P. W. (2011). Multiple paternity in egg clutches of hawksbill turtles (Eretmochelys imbricata). Conservation Genetics 12, 601–605.
Multiple paternity in egg clutches of hawksbill turtles (Eretmochelys imbricata).Crossref | GoogleScholarGoogle Scholar |

Kichler, K., Holder, M. T., Davis, S. K., Márquez-M, R., and Owens, D. W. (1999). Detection of multiple paternity in the Kemp’s Ridley turtle with limited sampling. Molecular Ecology 8, 819–830.
Detection of multiple paternity in the Kemp’s Ridley turtle with limited sampling.Crossref | GoogleScholarGoogle Scholar |

Laloë, J.-O., Cozens, J., Renom, B., Taxonera, A., and Hays, G. C. (2014). Effects of rising temperature on the viability of an important sea turtle rookery. Nature Climate Change 4, 513–518.
Effects of rising temperature on the viability of an important sea turtle rookery.Crossref | GoogleScholarGoogle Scholar |

Lara-De La Cruz, L. I., Nakagawa, K. O., Cano-Camacho, H., Zavala-Paramo, M. G., Vazquez-Marrufo, G., and Chassin-Noria, O. (2010). Detecting patterns of fertilization and frequency of multiple paternity in Chelonia mydas of Colola (Michoacán, Mexico). Hidrobiológica 20, 85–89.

Lasala, J. A., Harrison, J. S., Williams, K. L., and Rostal, D. C. (2013). Strong male-biased operational sex ratio in a breeding population of loggerhead turtles (Caretta caretta) inferred by paternal genotype reconstruction analysis. Ecology and Evolution 3, 4736–4747.
Strong male-biased operational sex ratio in a breeding population of loggerhead turtles (Caretta caretta) inferred by paternal genotype reconstruction analysis.Crossref | GoogleScholarGoogle Scholar | 24363901PubMed |

Lee, P. L. M. (2008). Molecular ecology of sea turtles: new approaches and future directions. Journal of Experimental Marine Biology and Ecology 356, 25–42.
Molecular ecology of sea turtles: new approaches and future directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXitlGmsbg%3D&md5=e4df5be5c93aa6ab00cab751c11c7c2aCAS |

Lee, P. L. M., and Hays, G. C. (2004). Polyandry in a sea turtle: females make the best of a bad job. Proceedings of the National Academy of Sciences of the United States of America 101, 6530–6535.
Polyandry in a sea turtle: females make the best of a bad job.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjvVyitbk%3D&md5=3ddfc4617df9be35510cd742f38833c7CAS |

Limpus, C. J. (1993). The green turtle, Chelonia mydas, in Queensland: breeding males in the southern Great Barrier Reef. Wildlife Research 20, 513–523.
The green turtle, Chelonia mydas, in Queensland: breeding males in the southern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Marshall, T. C., Slate, J., Kruuk, L. E. B., and Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity. Molecular Ecology 7, 639–655.
Statistical confidence for likelihood-based paternity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c3ps1Olsw%3D%3D&md5=9beeef2df40e22a0e2022abfa3d3d1f4CAS | 9633105PubMed |

Miller, J. D. (1985). Embryology of marine turtles. In ‘Biology of the Reptilia. Vol. 14’. (Eds C. Gans, F. Billet, and P. Maderson.) pp. 269–328. (John Wiley and Sons: New York.)

Moore, M. K., and Ball, R. M. (2002). Multiple paternity in loggerhead turtle (Caretta caretta) nests on Melbourne Beach, Florida: a microsatellite analysis. Molecular Ecology 11, 281–288.
Multiple paternity in loggerhead turtle (Caretta caretta) nests on Melbourne Beach, Florida: a microsatellite analysis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhvF2qtr4%3D&md5=07491c9b8491679d8afbc1ea4ea26e8bCAS | 11856428PubMed |

Mrosovsky, N. (1994). Sex ratios of sea turtles. The Journal of Experimental Zoology 270, 16–27.
Sex ratios of sea turtles.Crossref | GoogleScholarGoogle Scholar |

Pacioni, C., Trocini, S., Heithaus, M., Burkholder, D., Thomson, J., Warren, K., and Krutzen, M. (2012). Preliminary assessment of the genetic profile of the Western Australian loggerhead turtle population using mitochondrial DNA. In ‘Proceedings of the First Western Australian Sea Turtle Symposium’. p. 19. Department of Parks and Wildlife, Government of Western Australia.

Peakall, R., and Smouse, P. E. (2012). GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics 28, 2537–2539.
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVehtbjI&md5=c2d63b85591aae4d29c4f9f3f9dae5f3CAS | 22820204PubMed |

Peare, T., and Parker, P. G. (1996). Local genetic structure within two rookeries of Chelonia mydas (the green turtle). Heredity 77, 619–628.
Local genetic structure within two rookeries of Chelonia mydas (the green turtle).Crossref | GoogleScholarGoogle Scholar | 8972082PubMed |

Pearse, D. E., and Avise, J. C. (2001). Turtle mating systems: behaviour, sperm storage, and genetic paternity. The Journal of Heredity 92, 206–211.
Turtle mating systems: behaviour, sperm storage, and genetic paternity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fht1Wrtg%3D%3D&md5=cbc8d2b22a8252915754214430194823CAS | 11396580PubMed |

Phillips, K. P., Jorgensen, T. H., Jolliffe, K. G., Jolliffe, S.-M., Henwood, J., and Richardson, D. S. (2013). Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle. Molecular Ecology 22, 2301–2312.
Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle.Crossref | GoogleScholarGoogle Scholar | 23379838PubMed |

Phillips, K. P., Jorgensen, T. H., Jolliffe, K. G., and Richardson, D. S. (2014a). Potential inter-season sperm storage by a female hawksbill turtle. Marine Turtle Newsletter 140, 13–14.

Phillips, K. P., Mortimer, J. A., Jolliffe, K. G., Joregensen, T. H., and Richardson, D. S. (2014b). Molecular techniques reveal cryptic life history and demographic processes of a critically endangered marine turtle. Journal of Experimental Marine Biology and Ecology 455, 29–37.
Molecular techniques reveal cryptic life history and demographic processes of a critically endangered marine turtle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntl2nt7Y%3D&md5=cea14ec98bf0a07c8f819d53cfd410d3CAS |

Reinhold, L., and Whiting, A. (2014). High-density loggerhead sea turtle nesting on Dirk Hartog Island, Western Australia. Marine Turtle Newsletter 141, 7–10.

Rieder, J. P., Parker, P. G., Spotila, J. R., and Irwin, M. E. (1998). The mating system of the leatherback turtle: a molecular approach. In ‘Proceedings of the Sixteenth Annual Symposium on Sea Turtle Biolgy and Conservation’. (Eds R. Byles and Y. Fernandez.) pp. 120–121. NOAA Technical Memorandum NMFS-SEFSC-412. National Technical Information Service, Springfield, Virginia.

Sakaoka, K., Yoshii, M., Okamoto, H., Sakai, F., and Nagasawa, K. (2011). Sperm utilization patterns and reproductive success in captive loggerhead turtles (Caretta caretta). Chelonian Conservation and Biology 10, 62–72.
Sperm utilization patterns and reproductive success in captive loggerhead turtles (Caretta caretta).Crossref | GoogleScholarGoogle Scholar |

Schofield, G., Scott, R., Dimadi, A., Fossette, S., Katselidis, K. A., Koutsoubas, D., Lilley, M. K. S., Pantis, J. D., Karagouni, A. D., and Hays, G. C. (2013). Evidence-based marine protected area planning for a highly mobile endangered marine vertebrate. Biological Conservation 161, 101–109.
Evidence-based marine protected area planning for a highly mobile endangered marine vertebrate.Crossref | GoogleScholarGoogle Scholar |

Shamblin, B. M., Faircloth, B. C., Dodd, M., Wood-Jones, A., Castleberry, S. B., Carroll, J. P., and Nairn, C. J. (2007). Tetranucleotide microsatellites from the loggerhead sea turtle (Caretta caretta). Molecular Ecology Notes 7, 784–787.
Tetranucleotide microsatellites from the loggerhead sea turtle (Caretta caretta).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ertL3L&md5=1772e9f1bcaa648e1f3f2f5edb90fe3eCAS |

Shine, R. (2005). Life-history and evolution in reptiles. Annual Review of Ecology Evolution and Systematics 36, 23–46.
Life-history and evolution in reptiles.Crossref | GoogleScholarGoogle Scholar |

Short, A. D. (2005). Gnaraloo Bay. In ‘Beaches of the Western Australian Coast – Eucla to Roebuck Bay: A Guide to Their Nature, Characteristics, Surf and Safety’. pp. 322–323. (Sydney University Press: Sydney.)

Standora, E. A., and Spotila, J. R. (1985). Temperature dependent sex determination in sea turtles. Copeia 1985, 711–722.
Temperature dependent sex determination in sea turtles. Crossref | GoogleScholarGoogle Scholar |

Stewart, K. R., and Dutton, P. H. (2011). Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (Dermochelys coriacea). Conservation Genetics 12, 1101–1113.
Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (Dermochelys coriacea).Crossref | GoogleScholarGoogle Scholar |

Sunnucks, P., and Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xht1Kgurk%3D&md5=e3ae96f860d5e87f96c773d3dcf4398bCAS | 8742640PubMed |

Theissinger, K., Fitzsimmons, N. N., Limpus, C. J., Parmenter, C. J., and Phillott, A. D. (2009). Mating system, multiple paternity and effective population size in the endemic flatback turtle (Natator depressus) in Australia. Conservation Genetics 10, 329–346.
Mating system, multiple paternity and effective population size in the endemic flatback turtle (Natator depressus) in Australia.Crossref | GoogleScholarGoogle Scholar |

Trocini, S. (2013). Health assessment and hatching success of two Western Australian loggerhead turtle (Caretta caretta) populations. Ph.D. Thesis, Murdoch University, Perth.

Uller, T., and Olsson, M. (2008). Multiple paternity in reptiles: patterns and processes. Molecular Ecology 17, 2566–2580.
Multiple paternity in reptiles: patterns and processes.Crossref | GoogleScholarGoogle Scholar | 18452517PubMed |

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=953af9dbdebc811d6f3951a35fbdd53dCAS |

Wang, J. (2004). Sibship reconstruction from genetic data with typing errors. Genetics 166, 1963–1979.
Sibship reconstruction from genetic data with typing errors.Crossref | GoogleScholarGoogle Scholar | 15126412PubMed |

Wang, J., and Santure, A. W. (2009). Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181, 1579–1594.
Parentage and sibship inference from multilocus genotype data under polygamy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXlsFWqurk%3D&md5=59dcf5e7a5510947a742c5fa2ed8de8cCAS | 19221199PubMed |

Woolgar, L. (2012). A comparison of two techniques used to model sand temperatures and sex ratios at loggerhead turtle (Caretta caretta) rookeries in Western Australia. M.Sc. Thesis, The University of Western Australia, Perth.

Woolgar, L., Trocini, S., and Mitchell, N. (2013). Key parameters describing temperature-dependent sex determination in the southernmost population of loggerhead sea turtles. Journal of Experimental Sea Biology and Ecology 449, 77–84.
Key parameters describing temperature-dependent sex determination in the southernmost population of loggerhead sea turtles.Crossref | GoogleScholarGoogle Scholar |

Wright, L. I., Fuller, W. J., Godley, B. J., McGowan, A., Tregenza, T., and Broderick, A. C. (2012a). Reconstruction of paternal genotypes over multiple breeding seasons reveals male green turtles do not breed annually. Molecular Ecology 21, 3625–3635.
Reconstruction of paternal genotypes over multiple breeding seasons reveals male green turtles do not breed annually.Crossref | GoogleScholarGoogle Scholar | 22591073PubMed |

Wright, L. I., Stokes, K. L., Fuller, W. J., Godley, B. J., McGowan, A., Snape, R., Tregenza, T., and Broderick, A. C. (2012b). Turtle mating patterns buffer against disruptive effects of climate change. Proceedings of the Royal Society B: Biological Sciences 279, 2122–2127.
Turtle mating patterns buffer against disruptive effects of climate change.Crossref | GoogleScholarGoogle Scholar | 22279164PubMed |

Zbinden, J. A., Largiadèr, C. R., Leippert, F., Margaritoulis, D., and Arlettaz, R. (2007). High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles. Molecular Ecology 16, 3703–3711.
High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtV2mu7%2FL&md5=0ce9b0d52edfc9cd38e83b87dee36cd0CAS | 17845442PubMed |