Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

16 microsatellite loci for the Australian Great Artesian Basin spring amphipod, Wangiannachiltonia guzikae

Hannah L. Robertson A and Nicholas P. Murphy A B
+ Author Affiliations
- Author Affiliations

A Department of Genetics, La Trobe University, Bundoora, Vic. 3086, Australia.

B Corresponding author. Email: n.murphy@latrobe.edu.au

Australian Journal of Zoology 61(2) 109-111 https://doi.org/10.1071/ZO13011
Submitted: 24 January 2013  Accepted: 30 April 2013   Published: 3 June 2013

Abstract

454 Next Generation sequencing was used to develop a set of microsatellite markers for the Great Artesian Basin (GAB) amphipod, Wangiannachiltonia guzikae. Primers were designed for 42 microsatellite loci. A total of 22 loci were successfully amplified and 16 characterised using 30 individuals from a single GAB spring population. Across these 16 loci, observed heterozygosity ranged from 0.000 to 0.818 (mean = 0.445) and the number of alleles per locus ranged from 2 to 12 (mean = 6.688). Of these 16 loci, however, only 10 were in Hardy–Weinberg equilibrium, though all 16 loci should be retained for further studies in the event that stochastic events affected equilibrium of this single population.


References

Animal Genomics Laboratory (2001). Extraction of DNA from tissue: High salt method. 1.0.

Blacket, M., Robin, C., Good, R., Lee, S., and Miller, A. (2012). Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Molecular Ecology Resources 12, 456–463.
| 1:CAS:528:DC%2BC38XptVGrsr8%3D&md5=e44618c43971aa9eb8d261ebbb19925eCAS | 22268566PubMed |

Chapuis, M. P., and Estoup, A. (2007). Microsatellite null alleles and estimation of population differentiation. Molecular Biology and Evolution 24, 621–631.
Microsatellite null alleles and estimation of population differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjtleku7c%3D&md5=c76a24b45c2a6fd648b649119328411fCAS | 17150975PubMed |

Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T., and Wilson, A. (2011). Geneious v5.4.

Faircloth, B. (2008). MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Molecular Ecology Resources 8, 92–94.
| 1:CAS:528:DC%2BD1cXivVSitL8%3D&md5=cbe40398bb3af83ba9b0b0362378bfc7CAS | 21585724PubMed |

Gardner, M. G., Fitch, A. J., Bertozzi, T., and Lowe, A. J. (2011). Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development. Molecular Ecology Resources 11, 1093–1101.
Rise of the machines – recommendations for ecologists when using next generation sequencing for microsatellite development.Crossref | GoogleScholarGoogle Scholar | 21679314PubMed |

Harvey, M. S. (2002). Short-range endemism amongst the Australian fauna: some examples from non-marine environments. Invertebrate Systematics 16, 555–570.
Short-range endemism amongst the Australian fauna: some examples from non-marine environments.Crossref | GoogleScholarGoogle Scholar |

Murphy, N. P., Guzik, M. T., and Wilmer, J. W. (2010). The influence of landscape on population structure of four invertebrates in groundwater springs. Freshwater Biology 55, 2499–2509.
The influence of landscape on population structure of four invertebrates in groundwater springs.Crossref | GoogleScholarGoogle Scholar |

Murphy, N. P., Adams, M., Guzik, M. T., and Austin, A. D. (2013). Extraordinary micro-endemism in Australian desert spring amphipods. Molecular Phylogenetics and Evolution 66, 645–653.
Extraordinary micro-endemism in Australian desert spring amphipods.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s7isVGitw%3D%3D&md5=f3c99cd105452757f311638966a95f6fCAS | 23142695PubMed |

Peakall, R. O. D., and Smouse, P. E. (2006). Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.

Raymond, M, and Rousset, F (1995). GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86, 248–249.

Rousset, F (2008). Genepop’007: a complete reimplementation of the Genepop software for Windows and Linux. Molecular Ecology Resources 8, 103–106.
| 21585727PubMed |

Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. In ‘Bioinformatics Methods and Protocols: Methods in Molecular Biology’. (Eds S. Krawetz and S. Misener) pp. 365–386. (Humana Press: Totowa, NJ.)

Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M., and Shipley, P. (2004). Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535–538.
Micro-checker: software for identifying and correcting genotyping errors in microsatellite data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXnvFOktb8%3D&md5=8f159c0b84827ce791b15209338a9746CAS |