Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
REVIEW (Open Access)

Kangaroo gene mapping and sequencing: insights into mammalian genome evolution

Jennifer A. Marshall Graves
+ Author Affiliations
- Author Affiliations

La Trobe Institute of Molecular Sciences, La Trobe University, Melbourne, Vic. 3186, Australia and Research School of Biology, Australian National University, Canberra, ACT 2060, Australia. Email: jenny.graves@anu.edu.au

Australian Journal of Zoology 61(1) 4-12 https://doi.org/10.1071/ZO13002
Submitted: 7 January 2013  Accepted: 30 April 2013   Published: 7 June 2013

Journal Compilation © CSIRO Publishing 2013 Open Access CC BY-NC-ND

Abstract

The deep divergence of marsupials and eutherian mammals 160 million years ago provides genetic variation to explore the evolution of DNA sequence, gene arrangement and regulation of gene expression in mammals. Following the pioneering work of Professor Desmond W. Cooper, emerging techniques in cytogenetics and molecular biology have been adapted to characterise the genomes of kangaroos and other marsupials. In particular, genetic and genomic work over four decades has shown that marsupial sex chromosomes differ significantly from the eutherian XY chromosome pair in their size, gene content and activity. These differences can be exploited to deduce how mammalian sex chromosomes, sex determination and epigenetic silencing evolved.


References

Alsop, A. E., Miethke, P., Rofe, R., Koina, E., Sankovic, N., Deakin, J., Haines, H., Rapkins, R. W., and Graves, J. A. M. (2005). Characterizing the chromosomes of the Australian model marsupial Macropus eugenii (tammar wallaby). Chromosome Research 13, 627–636.
Characterizing the chromosomes of the Australian model marsupial Macropus eugenii (tammar wallaby).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVWiu7vK&md5=31dac2aaa004000a1e4567b8c5a86659CAS | 16170627PubMed |

Bender, H. S., Murchison, E. P., Pickett, H. A., Deakin, J. E., Strong, M. A., Conlan, C., McMillan, D. A., Neumann, A. A., Greider, C. W., Hannon, G. J., Hannon, G. J., Reddel, R. R., and Graves, J. A. M. (2012). Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length. PLoS ONE 7, e46195.
Extreme telomere length dimorphism in the Tasmanian devil and related marsupials suggests parental control of telomere length.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVGhtLjM&md5=b5560779046982c83734960f13ffde2eCAS | 23049977PubMed |

Bennett, J. H., Hayman, D. L., and Hope, R. M. (1986). Novel sex differences in linkage values and meiotic chromosome behavior in a marsupial. Nature 323, 59–60.
Novel sex differences in linkage values and meiotic chromosome behavior in a marsupial.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL28zhtFegsQ%3D%3D&md5=de6c686d6c36edf05bed401cea5fa3fdCAS | 3748181PubMed |

Blackburn, E. H., Greider, C. W., and Szostak, J. W. (2006). Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging. Nature Medicine 12, 1133–1138.
Telomeres and telomerase: the path from maize, Tetrahymena and yeast to human cancer and aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtVChsrvM&md5=ab5ebeb452ae397264e04b7512f6ced1CAS | 17024208PubMed |

Bulazel, K. V., Ferreri, G. C., Eldridge, M, and O’Neill, R. J. (2007). Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biology 8, R170.
Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages.Crossref | GoogleScholarGoogle Scholar | 17708770PubMed |

Carone, D. M., and O’Neill, R. J. (2010). Marsupial centromeres and telomeres: dynamic chromosome domains. In ‘Marsupial Genetics and Genomics’. (Eds J. E., Deakin, P. D. Waters, and J. A. M. Graves.) pp. 55–74. (Springer: Dordrecht, Heidleberg, London, New York.)

Cesare, A. J., and Reddel, R. R. (2010). Alternative lengthening of telomeres: models, mechanisms and implications. Nature Reviews Genetics 11, 319–330.
Alternative lengthening of telomeres: models, mechanisms and implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXkvVSqs70%3D&md5=c9a9fb1bccca2990d693a0f519b10610CAS | 20351727PubMed |

Cooper, D. W., VandeBerg, J. L., Sharman, G. B., and Poole, W. E. (1971). Phosphoglycerate kinase polymorphism in kangaroos provides further evidence for paternal X inactivation. Nature: New Biology 230, 155–157.
| 1:CAS:528:DyaE3MXhtlOksb8%3D&md5=90b73d720607d41e4c34ce639ff8451bCAS |

Cooper, D. W., Johnston, P. G., Graves, J. A. M., and Watson, J. M. (1993). X-inactivation in marsupials and monotremes. Seminars in Developmental Biology 4, 117–128.
X-inactivation in marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar |

Dawson, G. W., and Graves, J. A. M. (1986). Gene mapping in marsupials and monotremes. III. Assignment of four genes to the X chromosome of the wallaroo and the euro (Macropus robustus). Cytogenetics and Cell Genetics 42, 80–84.
Gene mapping in marsupials and monotremes. III. Assignment of four genes to the X chromosome of the wallaroo and the euro (Macropus robustus).Crossref | GoogleScholarGoogle Scholar |

Dawson, G. W., and Graves, J. A. M. (1987). Gene mapping in marsupials and monotremes. IV. Assignment of PEPA to chromosome 4 of the wallaroo (Macropus robustus). Cytogenetics and Cell Genetics 45, 1–4.
Gene mapping in marsupials and monotremes. IV. Assignment of PEPA to chromosome 4 of the wallaroo (Macropus robustus).Crossref | GoogleScholarGoogle Scholar |

Deakin, J. E., Chaumeil, J, Hore, T. A., and Graves, J. A. M. (2009). Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes. Chromosome Research 17, 671–685.
Unravelling the evolutionary origins of X chromosome inactivation in mammals: insights from marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXht1WhsLrE&md5=59e555748b77ae2c345647720ebf7712CAS | 19802707PubMed |

Deakin, J. E., Waters, P. D., and Graves, J. A. M. (Eds.) (2010). ‘Marsupial Genetics and Genomics.’ (Springer: Berlin.)

Deakin, J. E., Graves, J. A. M., and Rens, W. R. (2012). The evolution of marsupial and monotreme chromosomes. Cytogenetic and Genome Research 137, 113–129.
The evolution of marsupial and monotreme chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38josFGlug%3D%3D&md5=93e77312ec538c5226d844462750eb47CAS | 22777195PubMed |

Delbridge, M. L., Lingenfelter, P. A., Disteche, C. M., and Graves, J. A. M. (1999). The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome. Nature Genetics 22, 223–224.
The candidate spermatogenesis gene RBMY has a homologue on the human X chromosome.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXkt1eqsLg%3D&md5=e48f1bce0bdc678b87eb39e9275ff60cCAS | 10391206PubMed |

Dobrovic, A., and Graves, J. A. M. (1986). Gene mapping in marsupials and monotremes. II. Assignments to the X chromosome of dasyurid species. Cytogenetics and Cell Genetics 4, 9–13.

Fernandez-Donosa, R., Berrios, S., Rufas, J. S., and Page, J. (2010). Marsupial sex chromosome behavior during male meiosis. In ‘Marsupial Genetics and Genomics’. (Eds J. E. Deakin, P. D. Waters, and J. A. M. Graves.) pp. 187–204. (Springer: Berlin.)

Ferreri, G. C., Brown, J. D., Obergfell, C., Jue, N., Finn, C. E., O’Neill, M. J., and O’Neill, R. J. (2011). Recent amplification of the kangaroo endogenous retrovirus, KERV, limited to the centromere. Journal of Virology 85, 4761–4771.
Recent amplification of the kangaroo endogenous retrovirus, KERV, limited to the centromere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Wlt7bE&md5=07c5bb27ca8bbead1c3d7bd911deb03cCAS | 21389136PubMed |

Foster, J. W., and Graves, J. A. M. (1994). An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene. Proceedings of the National Academy of Sciences of the United States of America 91, 1927–1931.
An SRY-related sequence on the marsupial X chromosome: implications for the evolution of the mammalian testis-determining gene.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXivFWisr0%3D&md5=95efdcb0c5fd4455f79d186871a55eabCAS | 8127908PubMed |

Foster, J. W., Brennan, F. E., Hampikian, G. K., Goodfellow, P. N., Sinclair, A. H., Lovell-Badge, R., Selwood, L., Renfree, M. B., Cooper, D. W., and Graves, J. A. M. (1992). Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials. Nature 359, 531–533.
Evolution of sex determination and the Y chromosome: SRY-related sequences in marsupials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlamt70%3D&md5=0094a30050b26265663fdbc9fc1a99b8CAS | 1406969PubMed |

Glas, R., Graves, J. A. M., Toder, R., Ferguson-Smith, M. A., and O’Brien, P. C. O. (1999). Cross-species chromosome painting between human and marsupial directly demonstrates the ancient region of the mammalian X. Mammalian Genome 10, 1115–1116.
Cross-species chromosome painting between human and marsupial directly demonstrates the ancient region of the mammalian X.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXns1Srurg%3D&md5=f647d4e020caf03cc026f8b52250eaeeCAS | 10556436PubMed |

Graves, J. A. M. (1967). DNA synthesis in chromosomes of cultured leucocytes from two marsupial species. Experimental Cell Research 46, 37–57.
DNA synthesis in chromosomes of cultured leucocytes from two marsupial species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF2sXktlSnt7c%3D&md5=db7185d0611aa40a14144d4aae726d11CAS |

Graves, J. A. M. (1987). The evolution of mammalian sex chromosomes and dosage compensation – clues from marsupials and monotremes. Trends in Genetics 3, 252–256.
The evolution of mammalian sex chromosomes and dosage compensation – clues from marsupials and monotremes.Crossref | GoogleScholarGoogle Scholar |

Graves, J. A. M. (1995). The origin and function of the mammalian Y chromosome and Y-borne genes – an evolving understanding. BioEssays 17, 311–320.
The origin and function of the mammalian Y chromosome and Y-borne genes – an evolving understanding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M3mtVehsA%3D%3D&md5=8a1683356bc88bd40dd7987419627492CAS |

Graves, J. A. M. (2006). Sex chromosome specialization and degeneration in mammals. Cell 124, 901–914.
Sex chromosome specialization and degeneration in mammals.Crossref | GoogleScholarGoogle Scholar |

Graves, J. A. M., and Shetty, S (2001). Sex from W to Z – evolution of vertebrate sex chromosomes and sex determining genes. Journal of Experimental Zoology 281, 472–481.
Sex from W to Z – evolution of vertebrate sex chromosomes and sex determining genes.Crossref | GoogleScholarGoogle Scholar |

Graves, J. A. M., Chew, G. K., Cooper, D. W., and Johnston, P. G. (1979). Marsupial–mouse cell hybrids containing fragments of the marsupial X chromosome. Somatic Cell Genetics 5, 481–489.
Marsupial–mouse cell hybrids containing fragments of the marsupial X chromosome.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL3c%2Fjs1Kkug%3D%3D&md5=f89534f71652f26a015b3e3364310ff9CAS |

Graves, J. A. M., Hope, R. M., and Cooper, D. W. (Eds.) (1990). ‘Mammals from Pouches and Eggs: Genetics, Breeding and Evolution of Marsupials and Monotremes.’ (CSIRO Publishing: Melbourne.)

Graves, J. A. M., Wakefield, M. J., Renfree, M. B., Cooper, D. W., Speed, T., Lindblad-Toh, K., Lander, E. S., and Wilson, R. K. (2002). Proposal to sequence the genome of the model marsupial Macropus eugenii (tammar wallaby). Available at: http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/WallabySEQ.pdf

Genome 10K Community of Scientists (2009). A proposal to obtain whole genome sequence for 10,000 vertebrate species The Journal of Heredity 100, 675–680.
| 19656817PubMed |

Hayman, D. L., and Martin, P. G. (1974). ‘Animal Cytogenetics. Mammalia I: Monotremata and Marsupialia.’ (Gebruder Borntraeger: Berlin.)

Hope, R. M., and Graves, J. A. M. (1978). Fusion and hybridization of marsupial and eutherian cells. VI. Hybridization. The Australian Journal of Biological Sciences 31, 527–543.
| 1:STN:280:DyaE1M7os12ltg%3D%3D&md5=0a87c28f1200b164b47c0cbf1e28a17fCAS |

Hore, T. A., Koina, E., Wakefield, M. J., and Graves, J. A. M. (2007). The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals. Chromosome Research 15, 147–161.
The region homologous to the X-chromosome inactivation centre has been disrupted in marsupial and monotreme mammals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXisVaqtLo%3D&md5=6d5bd34975f1476b8d30da18440631c5CAS | 17333539PubMed |

Luo, Z. X., Yuan, C. X., Meng, Q. J., and Ji, Q. (2011). A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476, 442–445.
A Jurassic eutherian mammal and divergence of marsupials and placentals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOnu7jO&md5=8dde1241df0bb8ca9305345db8ca6bc7CAS | 21866158PubMed |

Lyon, M. F. (1961). Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190, 372–373.
Gene action in the X-chromosome of the mouse (Mus musculus L.).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF3c%2FosVGksw%3D%3D&md5=6f59bc6a91cfdd5b941820c76437d6b7CAS | 13764598PubMed |

McKenzie, L. M., Collet, C., and Cooper, D. W. (1997). Use of a subspecies cross for efficient development of a linkage map for a marsupial mammal, the tammar wallaby (Macropus eugenii). The Journal of Heredity 88, 398–400.
Use of a subspecies cross for efficient development of a linkage map for a marsupial mammal, the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1c%2FhvVSkuw%3D%3D&md5=079b0e3cc5798fad54f24124676438c0CAS | 9378916PubMed |

Mikkelsen, T. S., Wakefield, M. J., Aken, B., Amemiya, C. T., Chang, J. L., et al (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–177.
Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXltVGrsLw%3D&md5=e57e19dec553edd426b7ae91cedf8b04CAS | 17495919PubMed |

Murchison, E. P., Schulz-Trieglaff, O. B., Ning, Z., Alexandrov, L. B., Bauer, M. J., et al (2012). Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer. Cell 148, 780–791.
Genome sequencing and analysis of the Tasmanian devil and its transmissible cancer.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjtV2qsLs%3D&md5=c351ff9ccc5822f55e87625f19742ce1CAS | 22341448PubMed |

Murtagh, V. J., O’Meally, D., Sankovic, N., Delbridge, M. L., Kuroki, Y., Boore, J. L., Toyoda, A., Jordan, K. S., Pask, A. J., Renfree, M. B., Fujiyama, A., Graves, J. A. M., and Waters, P. D. (2012). Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution. Genome Research 22, 498–507.
Evolutionary history of novel genes on the tammar wallaby Y chromosome: implications for sex chromosome evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjsV2lsb0%3D&md5=9adc435fae6aa1dd5dad7f209ee18987CAS | 22128133PubMed |

Nanda, I., Shan, Z., Schartl, M., Burt, D. W., Koehler, M., Nothwang, H., Grützner, F., Paton, I. R., Windsor, D., Dunn, I., Engel, W., Staeheli, P., Mizuno, S., Haaf, T., and Schmid, M. (1999). 300 million years of conserved synteny between chicken Z and human chromosome 9. Nature Genetics 21, 258–259.
300 million years of conserved synteny between chicken Z and human chromosome 9.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVCit7k%3D&md5=15950bbb3ac858cfe8ef8b46ccbd3694CAS | 10080173PubMed |

O, W. S., Short, R.V., Renfree, M. B., and Shaw, G (1988). Primary genetic control of somatic sexual differentiation in a mammal. Nature 331, 716–717.
Primary genetic control of somatic sexual differentiation in a mammal.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c7ktlWmtA%3D%3D&md5=b4fd4d36f2035712846f82858bffdba3CAS | 3344046PubMed |

Ohno, S. (1967). ‘Sex Chromosomes and Sex-Linked Genes.’ (Springer-Verlag: New York.)

Pask, A. J., Renfree, M. B., and Graves, J. A. M. (2000). The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination. Proceedings of the National Academy of Sciences of the United States of America 97, 13198–13202.
The human sex-reversing ATRX gene has a homologue on the marsupial Y chromosome, ATRY: implications for the evolution of mammalian sex determination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXosVKqurY%3D&md5=22fe3d769999ec2b65d897be4636c56cCAS |

Rapkins, R. W., Hore, T., Smithwick, M., Ager, E., Pask, A., Renfree, M. B., Kohn, M., Hameister, H., Nicholls, R. D., Deakin, J. E., and Graves, J. A. M. (2006). Recent assembly and initiating of imprinting in the Prader-Willi/Angelman imprinted domain. PLOS Genetics 2, e182.
Recent assembly and initiating of imprinting in the Prader-Willi/Angelman imprinted domain.Crossref | GoogleScholarGoogle Scholar | 17069464PubMed |

Renfree, M. B., Papenfuss, A. T., Deakin, J. E., Lindsay, J., Heider, T., et al (2011). Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development. Genome Biology 12, R81.
Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.Crossref | GoogleScholarGoogle Scholar | 21854559PubMed |

Rens, W., O’Brien, P. C. M., Yang, F., Solanky, N., Perelman, P., Graphodatsky, A. S., Ferguson, M. W. J., Svartman, M., De Leo, A. A., Graves, J. A. M., and Ferguson-Smith, M. A. (2001). Karyotype relationships between distantly related marsupials from South America and Australia. Chromosome Research 9, 301–308.
Karyotype relationships between distantly related marsupials from South America and Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXksFCitbk%3D&md5=b2f7e8397d378d3518afad48f067c6ddCAS | 11419794PubMed |

Rens, W., O’Brien, P. C. M., Fairclough, H., Harman, L., Graves, J. A. M., and Ferguson-Smith, M. A. (2003). Reversal and convergence in marsupial chromosome evolution. Cytogenetic and Genome Research 102, 282–290.
Reversal and convergence in marsupial chromosome evolution.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c%2FotVKrug%3D%3D&md5=5260a2258a838e6a5cf4d56ceb26a3c8CAS | 14970718PubMed |

Richardson, B. J., Czuppon, A. B., and Sharman, G. B. (1971). Inheritance of glucose-6-phosphate dehydrogenase variation in kangaroos. Nature: New Biology 31, 154–155.

Rodriguez Delgado, C. L., Waters, P. D., Gilbert, C., Robinson, T. J., and Graves, J. A. M. (2009). Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years. Chromosome Research 17, 917–926.
Physical mapping of the elephant X chromosome: conservation of gene order over 105 million years.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtl2ksL3I&md5=7c7855f8d837689a906595e7f06d0613CAS |

Rofe, R., and Hayman, D. L. (1985). G-banding evidence for a conserved complement in the Marsupialia. Cytogenetics and Cell Genetics 39, 40–50.
G-banding evidence for a conserved complement in the Marsupialia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL2M7ltlCgtA%3D%3D&md5=abc33dbdcdd3e1d425711147488b59a1CAS | 3979118PubMed |

Samollow, P. B., Ford, A. L., and VandeBerg, J. L. (1987). X-linked gene expression in the Virginia opossum: differences between the paternally derived Gpd and Pgk-A loci. Genetics 115, 185–189.
| 1:CAS:528:DyaL2sXhtFOis7o%3D&md5=977964e9a14a700f5153e4d0fd3e3e48CAS | 3557111PubMed |

Samollow, P. B., Gouin, N., Miethke, P., Mahaney, S. M., Kenney, M., VandeBerg, J. L., Graves, J. A. M., and Kammerer, C. M. (2007). A microsatellite-based, physically anchored linkage map for the gray, short-tailed opossum (Monodelphis domestica). Chromosome Research 15, 269–281.
| 1:CAS:528:DC%2BD2sXmsV2jsbk%3D&md5=711ba593fdf304fd6eae1e5b78ce7b1fCAS | 17333535PubMed |

Sankovic, N., Delbridge, M. L., Gruetzner, F., Ferguson-Smith, M., O’Brien, P. C. M., and Graves, J. A. M. (2006). Creation of a highly enriched marsupial Y chromosome specific BAC sub-library using isolated Y chromosomes. Chromosome Research 14, 657–664.
Creation of a highly enriched marsupial Y chromosome specific BAC sub-library using isolated Y chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XptlSmtbw%3D&md5=e07cf90a43ab234d73002a410e97b4b3CAS | 16964572PubMed |

Sharman, G. B. (1971). Late DNA replication in the paternally derived X chromosome of female kangaroos. Nature 230, 231–232.
Late DNA replication in the paternally derived X chromosome of female kangaroos.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M7js1GhtA%3D%3D&md5=d091f87a97d8a72b1e97f544388bc140CAS | 4926712PubMed |

Sharman, G. B. (1973). The chromosomes of non-eutherian mammals. In ‘Cytotaxonomy and Vertebrate Evolution’. (Eds A. N. Chiarelli, and E. Capanna.) pp. 485–530.(Academic Press: New York.)

Siddle, H. V., Deakin, J. E., Coggill, P., Hart, E., Cheng, Y., Wong, E. S. W., Harrow, J, Beck, S, and Belov, K (2009). MHC-linked and un-linked class I genes in the wallaby. BMC Genomics 10, 310.
MHC-linked and un-linked class I genes in the wallaby.Crossref | GoogleScholarGoogle Scholar | 19602235PubMed |

Sinclair, A. H., Wrigley, J. M., and Graves, J. A. M. (1987). Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes. Genetical Research 50, 131–136.
Autosomal assignment of OTC in marsupials and monotremes: implications for the evolution of sex chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1c%2FosVCitQ%3D%3D&md5=56c512bbea1e94e9cd56eddffdaeaf74CAS | 3692164PubMed |

Sinclair, A. H., Foster, J. W., Spencer, J. A., Page, D. C., Palmer, M., Goodfellow, P. N., and Graves, J. A. M. (1988). Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials. Nature 336, 780–783.
Sequences homologous to ZFY, a candidate human sex-determining gene, are autosomal in marsupials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXovFOjtw%3D%3D&md5=86589c8724dbf6e4840c4119ebae8c3cCAS | 3144651PubMed |

Sinclair, A. H., Berta, P., Palmer, M. S., Hawkins, J. R., Griffiths, B. L., Smith, M. J., Foster, J. W., Frischauf, A. M., Lovell-Badge, R., and Goodfellow, P. N. (1990). A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346, 240–244.
A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXkvFaltrg%3D&md5=831a7da62b4645709111e53a5ce31a9aCAS | 1695712PubMed |

Spencer, J. A., Watson, J. M., and Graves, J. A. M. (1991a). The X chromosome of marsupials shares a highly conserved region with eutherians. Genomics 9, 598–604.
The X chromosome of marsupials shares a highly conserved region with eutherians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXksVeis78%3D&md5=6818f7cc197ddb47a2961d98371ed312CAS | 2037290PubMed |

Spencer, J. A., Sinclair, A. H., Watson, J. M., and Graves, J. A. M. (1991b). Genes on the short arm of the human X chromosome are not shared with the marsupial X. Genomics 11, 339–345.
Genes on the short arm of the human X chromosome are not shared with the marsupial X.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xlt1Kmug%3D%3D&md5=896c6422b462ea10450911e7965658a2CAS | 1769650PubMed |

Suzuki, S., Renfree, M. B., Pask, A. J., Shaw, G., Kobayashi, S., Kohda, T., Kaneko-Ishino, T., and Ishino, F. (2005). Genomic imprinting of IGF2, p57(KIP2) and PEG1/MEST in a marsupial, the tammar wallaby. Mechanisms of Development 122, 213–222.
Genomic imprinting of IGF2, p57(KIP2) and PEG1/MEST in a marsupial, the tammar wallaby.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkvFensw%3D%3D&md5=c61f09dfa40f7979ea67b87195853d84CAS | 15652708PubMed |

Svartman, M., and Vianna-Morgante, A. M. (1999). Comparative genome analysis in American marsupials: chromosome banding and in-situ hybridization. Chromosome Research 7, 267–275.
Comparative genome analysis in American marsupials: chromosome banding and in-situ hybridization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXltV2jtrs%3D&md5=489c773f6b35828a19e592de3e031583CAS | 10461872PubMed |

Toder, R., Wakefield, M., and Graves, J. A. M. (2000). The minimal mammalian Y chromosome – the marsupial Y as a model system. Cytogenetics and Cell Genetics 91, 285–292.
The minimal mammalian Y chromosome – the marsupial Y as a model system.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7otFyltw%3D%3D&md5=edbfd28bdbdd57c434f3a59241b67a2bCAS | 11173870PubMed |

van Oorschot, R. A., Porter, P. A., Kammerer, C. M., and VandeBerg, J. L. (1992). Severely reduced recombination in females of the South American marsupial Monodelphis domestica. Cytogenetics and Cell Genetics 60, 64–67.
Severely reduced recombination in females of the South American marsupial Monodelphis domestica.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK383lvVSquw%3D%3D&md5=0428db9bbad4a1201c14c1b1e909bb23CAS | 1582262PubMed |

Veyrunes, F., Waters, P. D., Miethke, P., Rens, W., McMillan, D., Alsop, A. E., Grützner, F., Deakin, J. E., Whittington, C. M., Schatzkamer, K., Kremitzky, C. L., Graves, T., Ferguson-Smith, M. A., Warren, W., and Graves, J. A. M. (2008). Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Research 18, 965–973.
Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsVygsbY%3D&md5=b05983bdd248703a2c41473236036e9dCAS | 18463302PubMed |

Wang, C., Webley, L., Wei, K.-J., Wakefield, M. J., Patel, H. R., Deakin, J. E., Alsop, A., Graves, J. A. M., Cooper, D. W., Nicholas, F. W., and Zenger, K. R. (2011a). A second-generation anchored linkage map of the tammar wallaby (Macropus eugenii). BMC Genetics 12, 72.
A second-generation anchored linkage map of the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 21854616PubMed |

Wang, C., Deakin, J. E., Rens, W., Zenger, K. L., Belov, K., Graves, J. A. M., and Nicholas, F. W. (2011b). An integrated tammar wallaby map and its use in creating a virtual tammar wallaby genome map. BMC Genomics 12, 422.
An integrated tammar wallaby map and its use in creating a virtual tammar wallaby genome map.Crossref | GoogleScholarGoogle Scholar | 21854555PubMed |

Wang, J., Wong, E. S. W., Whitley, J. C., Li, J., Stringer, J. M., Short, K. R., Renfree, M. B., Belov, K, and Cocks, B. G. (2011c). Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS ONE 6, e24030.
Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Wrt77N&md5=40e56e01e6cf0fb76f8e4854b145e63eCAS | 21912615PubMed |

Waters, P., Duffy, B., Frost, C. J., Delbridge, M. L., and Graves, J. A. M. (2001). The human Y chromosome derives largely from a single autosomal region added 80–130 MYA. Cytogenetics and Cell Genetics 92, 74–79.
The human Y chromosome derives largely from a single autosomal region added 80–130 MYA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXjs12gsb8%3D&md5=8fb3f6d1fd30ccd78cea802a6e003f1dCAS | 11306800PubMed |

Yu, H., Lindsay, J., Feng, Z. P., Frankenberg, S., Hu, Y., et al (2012). Evolution of coding and non-coding genes in HOX clusters of a marsupial. BMC Genomics 13, 251.
Evolution of coding and non-coding genes in HOX clusters of a marsupial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXot1Wmt7c%3D&md5=4553427d8be1175e2b4931befae24896CAS | 22708672PubMed |

Zenger, K. R., McKenzie, L. M., and Cooper, D. W. (2002). The first comprehensive genetic linkage map of a marsupial: the tammar wallaby (Macropus eugenii). Genetics 162, 321–323.
| 1:CAS:528:DC%2BD38Xotl2gsbk%3D&md5=eedc7bec66484671bd37a50fdc21f2d1CAS | 12242243PubMed |