Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

The genetic mating system of the long-nosed potoroo (Potorous tridactylus) with notes on male strategies for securing paternity

Greta J. Frankham A B C , Robert L. Reed A , Mark D. B. Eldridge B and Kathrine A. Handasyde A
+ Author Affiliations
- Author Affiliations

A Department of Zoology, The University of Melbourne, Melbourne, Vic. 3010, Australia.

B Terrestrial Vertebrates, Australian Museum, Sydney, NSW 2010, Australia.

C Corresponding author. Email: greta.frankham@austmus.gov.au

Australian Journal of Zoology 60(4) 225-234 https://doi.org/10.1071/ZO12064
Submitted: 28 June 2012  Accepted: 25 September 2012   Published: 7 November 2012

Abstract

The potoroids are a small group of cryptic macropodoid marsupials that are difficult to directly monitor in the wild. Consequently, information regarding their social and mating systems is limited. A population of long-nosed potoroos (Potorous tridactylus) on French Island, Victoria, was monitored from June 2005 to August 2010. Tissue samples were collected from 32 (19 ♂, 13 ♀) independent potoroos and 17 pouch young. We aimed to determine the genetic mating system and identify patterns of paternity through genotyping individuals at 10 microsatellite loci. Additionally, we investigated the importance of body mass and site residency as strategies in securing paternity. Twelve of the 17 pouch young sampled were assigned paternity with confidence to five males. Multiple pouch young were sampled from two long-term resident females, one of which had 10 pouch young sired by multiple partners, with some repeat paternity, while the other had three young sired by one male, suggesting that the mating system is not entirely promiscuous. Sires were recorded on site for significantly longer periods than non-sires but were not significantly larger than non-sires at conception. This suggests that sires employ strategies other than direct competition, such as scramble competition, to secure paternity in P. tridactylus.


References

Bach, C. (1998). ‘Birth Date Determination in Australian Marsupials.’ (Taronga Zoo: Sydney.)

Banks, S. C., Ward, S. J., Lindenmayer, D. B., Finlayson, G. R., Lawson, S. J., and Taylor, A. C. (2005). The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis. Molecular Ecology 14, 1789–1801.
The effects of habitat fragmentation on the social kin structure and mating system of the agile antechinus, Antechinus agilis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M3gsVWnug%3D%3D&md5=2e5aa9879f0a21e543af3ec8bc469076CAS |

Bennett, A. F. (1987a). Conservation of mammals within a fragmented forest environment: the contributions of insular biogeography and autecology. In ‘Nature Conservation: The Role of Remnants of Native Vegetation’. (Eds D. A. Saunders, G. W. Arnold, A. A. Burbidge and A. J. M. Hopkins.) pp. 41–52. (Surrey Beatty: Sydney.)

Bennett, A. F. (1987b). Biogeography and conservation of mammals within a fragmented forest environment in south-western Victoria. Ph.D. Thesis, University of Melbourne.

Bennett, A. F., and Baxter, B. J. (1989). Diet of the long-nosed potoroo Potorous tridactylus (Marsupialia: Potoroidae) in south-western Victoria. Australian Wildlife Research 16, 263–272.
Diet of the long-nosed potoroo Potorous tridactylus (Marsupialia: Potoroidae) in south-western Victoria.Crossref | GoogleScholarGoogle Scholar |

Birkhead, T. R., and Møller, A. P. (1992). ‘Sperm Competition in Birds. Evolutionary Causes and Consequences.’ (Academic Press: San Diego, CA.)

Claridge, A. W., and May, T. W. (1994). Mycophagy among Australian mammals. Austral Ecology 19, 251–275.
Mycophagy among Australian mammals.Crossref | GoogleScholarGoogle Scholar |

Clutton-Brock, T. H. (1989). Mammalian mating systems. Proceedings of the Royal Society of London. Series B, Biological Sciences 236, 339–372.
Mammalian mating systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M3ot1yktg%3D%3D&md5=b89a0b7799edab4eb08399c73a83b737CAS |

Croft, D. B. (1989). Social organization of the Macropodoidea. In ‘Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 505–525. (Surrey Beatty: Sydney.)

DeWoody, J. A. (2005). Molecular approaches to the study of parentage, relatedness, and fitness: practical applications for wild animals. Journal of Wildlife Management 69, 1400–1418.
Molecular approaches to the study of parentage, relatedness, and fitness: practical applications for wild animals.Crossref | GoogleScholarGoogle Scholar |

DeWoody, J. A., and Avise, J. C. (2001). Genetic perspectives on the natural history of fish mating systems. The Journal of Heredity 92, 167–172.
Genetic perspectives on the natural history of fish mating systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fht1Wkuw%3D%3D&md5=3dd77c2e57ee427b19a49d3890332581CAS |

Dieckmann, U., O’Hara, B., and Weisser, W. (1999). The evolutionary ecology of dispersal. Trends in Ecology & Evolution 14, 88–90.
The evolutionary ecology of dispersal.Crossref | GoogleScholarGoogle Scholar |

Eldridge, M. D. B., Piggott, M. P., and Hazlitt, S. L. (2010). Population genetic studies of the Macropodoidea: a review. In ‘Macropods: The Biology of Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Coulson and M. Eldridge.) pp. 35–51. (CSIRO Publishing: Melbourne.)

Elsner, W. K., Mitchell, A. T., and Fitzsimons, J. A. (2012). Distribution of the long-footed potoroo (Potorous longipes) and the spot-tailed quoll (Dasyurus maculatus) in the Goolengook Forest, east Gippsland, Victoria. Australian Mammalogy 34, 100–107.
Distribution of the long-footed potoroo (Potorous longipes) and the spot-tailed quoll (Dasyurus maculatus) in the Goolengook Forest, east Gippsland, Victoria.Crossref | GoogleScholarGoogle Scholar |

Emlen, S. T., and Oring, L. W. (1977). Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223.
Ecology, sexual selection, and the evolution of mating systems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s3hsFyrtQ%3D%3D&md5=063a6fcbcb40cd35b0a8940064375758CAS |

Fisher, D. O., and Lara, M. C. (1999). Effects of body size and home range on access to mates and paternity in male bridled nailtail wallabies. Animal Behaviour 58, 121–130.
Effects of body size and home range on access to mates and paternity in male bridled nailtail wallabies.Crossref | GoogleScholarGoogle Scholar |

Fisher, D. O., and Owens, I. P. F. (2000). Female home range size and the evolution of social organization in macropod marsupials. Journal of Animal Ecology 69, 1083–1098.
Female home range size and the evolution of social organization in macropod marsupials.Crossref | GoogleScholarGoogle Scholar |

Frankham, G. J., Reed, R. L., Fletcher, T. P., and Handasyde, K. A. (2011). Population ecology of the long-nosed potoroo (Potorous tridactylus) on French Island, Victoria. Australian Mammalogy 33, 73–81.
Population ecology of the long-nosed potoroo (Potorous tridactylus) on French Island, Victoria.Crossref | GoogleScholarGoogle Scholar |

Frederick, H., and Johnson, C. N. (1996). Social organisation in the rufous bettong, Aepyprymnus rufescens. Australian Journal of Zoology 44, 9–17.
Social organisation in the rufous bettong, Aepyprymnus rufescens.Crossref | GoogleScholarGoogle Scholar |

Friend, J. A. (2008). Gilbert’s potoroo. In ‘Mammals of Australia’. (Eds S. Van Dyck and R. Strahan.) pp. 297–298. (New Holland Publishing: Sydney.)

Gaines, M. S., and McClenaghan, L. R. (1980). Dispersal in small mammals. Annual Review of Ecology and Systematics 11, 163–196.
Dispersal in small mammals.Crossref | GoogleScholarGoogle Scholar |

Ganslosser, U. (1989). Agonistic behaviour in macropodoids – a review. In ‘Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 475–503. (Surrey Beatty: Sydney.)

Greenwood, P. J. (1980). Mating systems, philopatry and dispersal in birds and mammals. Animal Behaviour 28, 1140–1162.
Mating systems, philopatry and dispersal in birds and mammals.Crossref | GoogleScholarGoogle Scholar |

Griffith, S. C., Owens, I. P. F., and Thuman, K. A. (2002). Extra pair paternity in birds: a review of interspecific variation and adaptive function. Molecular Ecology 11, 2195–2212.
Extra pair paternity in birds: a review of interspecific variation and adaptive function.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptlSmurY%3D&md5=7df5d5005915f6a09a53cb5c1bd31738CAS |

Hazlitt, S. L., Sigg, D. P., Eldridge, M. D. B., and Goldizen, A. W. (2006). Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata). Molecular Ecology 15, 2997–3007.
Restricted mating dispersal and strong breeding group structure in a mid-sized marsupial mammal (Petrogale penicillata).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vovVeqsA%3D%3D&md5=db2eb2b0f388cb2cc0cb856e56dd0668CAS |

Heinsohn, G. E. (1968). Habitat requirements and reproductive potential of the macropod Potorous tridactylus in Tasmania. Mammalia 32, 30–43.
Habitat requirements and reproductive potential of the macropod Potorous tridactylus in Tasmania.Crossref | GoogleScholarGoogle Scholar |

Hughes, R. L. (1962). Reproduction in the macropod marsupial Potorous tridactylus (Kerr). Australian Journal of Zoology 10, 193–224.
Reproduction in the macropod marsupial Potorous tridactylus (Kerr).Crossref | GoogleScholarGoogle Scholar |

Hughes, R. L. (1964). Sexual development and spermatozoon morphology in the male macropod marsupial Potorous tridactylus (Kerr). Australian Journal of Zoology 12, 42–51.
Sexual development and spermatozoon morphology in the male macropod marsupial Potorous tridactylus (Kerr).Crossref | GoogleScholarGoogle Scholar |

Jarman, P. (1983). Mating system and sexual dimorphism in large terrestrial mammalian herbivores. Biological Reviews of the Cambridge Philosophical Society 58, 485–520.
Mating system and sexual dimorphism in large terrestrial mammalian herbivores.Crossref | GoogleScholarGoogle Scholar |

Jarman, P. (1991). Social behavior and organization in the Macropodoidea. Advances in the Study of Behavior 20, 1–50.
Social behavior and organization in the Macropodoidea.Crossref | GoogleScholarGoogle Scholar |

Jarman, P. J., and Southwell, C. J. (1986). Grouping, associations, and reproductive strategies in eastern grey kangaroos. In ‘Ecological Aspects of Social Evolution’. (Eds D. I. Rubenstein and R. W. Wrangham.) pp. 399–430. (Princeton University Press: Princeton, NJ.)

Johnson, C. N. (1989). Dispersal and philopatry in the macropodoids. In ‘Kangaroos, Wallabies and Rat-Kangaroos’. (Eds G. Grigg, P. Jarman and I. Hume.) pp. 593–601. (Surrey Beatty: Sydney.)

Johnson, C. N., and Payne, A. (2002). Sex-biased dispersal in the rufous bettong Aepyprymnus rufescens. Australian Mammalogy 24, 233–235.
Sex-biased dispersal in the rufous bettong Aepyprymnus rufescens.Crossref | GoogleScholarGoogle Scholar |

Johnston, P. G. (2008). Long-nosed potoroo. In ‘Mammals of Australia’. (Eds S. Van Dyck and R. Strahan.) pp. 302–304. (New Holland Publishers: Sydney.)

Kalinowski, S. T., Taper, M. L., and Marshall, T. C. (2007). Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Molecular Ecology 16, 1099–1106.
Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment.Crossref | GoogleScholarGoogle Scholar |

Kamler, J. F., Ballard, W. B., Lemons, P. R., and Mote, K. (2004). Variation in mating system and group structure in two populations of swift foxes, Vulpes velox. Animal Behaviour 68, 83–88.
Variation in mating system and group structure in two populations of swift foxes, Vulpes velox.Crossref | GoogleScholarGoogle Scholar |

Kaufmann, J. H. (1974). The ecology and evolution of social organization in the kangaroo family (Macropodidae). American Zoologist 14, 51–62.
The ecology and evolution of social organization in the kangaroo family (Macropodidae).Crossref | GoogleScholarGoogle Scholar |

Kirkpatrick, M. (1996). Good genes and direct selection in the evolution of mating preferences. Evolution 50, 2125–2140.
Good genes and direct selection in the evolution of mating preferences.Crossref | GoogleScholarGoogle Scholar |

Kleiman, D. G. (1977). Monogamy in mammals. The Quarterly Review of Biology 52, 39–69.
Monogamy in mammals.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2s7ntlGltQ%3D%3D&md5=9120c70cb06f81ccdf361d315f889f83CAS |

Long, K. I. (2001). Spatio-temporal interactions among male and female long-nosed potoroos, Potorous tridactylus (Marsupialia: Macropodoidea): mating system implications. Australian Journal of Zoology 49, 17–26.
Spatio-temporal interactions among male and female long-nosed potoroos, Potorous tridactylus (Marsupialia: Macropodoidea): mating system implications.Crossref | GoogleScholarGoogle Scholar |

Luikart, G., Painter, J., Crozier, R. H., Westerman, M., and Sherwin, W. B. (1997). Characterization of microsatellite loci in the endangered long-footed potoroo Potorous longipes. Molecular Ecology 6, 497–498.
Characterization of microsatellite loci in the endangered long-footed potoroo Potorous longipes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjsFOhsLs%3D&md5=61e5d5b07a34821f67513a81705f4a83CAS |

MacFarlane, A. M., and Coulson, G. (2005). Synchrony and timing of breeding influences sexual segregation in western grey and red kangaroos (Macropus fuliginosus and Macropus rufus). Journal of Zoology 267, 419–429.
Synchrony and timing of breeding influences sexual segregation in western grey and red kangaroos (Macropus fuliginosus and Macropus rufus).Crossref | GoogleScholarGoogle Scholar |

Martin, J. K., and Martin, A. A. (2007). Resource distribution influences mating system in the bobuck (Trichosurus cunninghami: Marsupialia). Oecologia 154, 227–236.
Resource distribution influences mating system in the bobuck (Trichosurus cunninghami: Marsupialia).Crossref | GoogleScholarGoogle Scholar |

Miller, E. J., Eldridge, M. D. B., Cooper, D. W., and Herbert, C. A. (2010). Dominance, body size and internal relatedness influence male reproductive success in eastern grey kangaroos (Macropus giganteus). Reproduction, Fertility and Development 22, 539–549.
Dominance, body size and internal relatedness influence male reproductive success in eastern grey kangaroos (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar |

Nams, V. O. (2006). ‘Locate III User’s Guide.’ (Pacer Computer Software: Tatamagouche, Nova Scotia, Canada.)

Norton, M. A., Claridge, A. W., French, K., and Prentice, A. (2010). Population biology of the long-nosed potoroo (Potorous tridactylus) in the Southern Highlands of New South Wales. Australian Journal of Zoology 58, 362–368.
Population biology of the long-nosed potoroo (Potorous tridactylus) in the Southern Highlands of New South Wales.Crossref | GoogleScholarGoogle Scholar |

Peakall, R., and Smouse, P. E. (2006). Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Pope, L. C., Sharp, A., and Moritz, C. (1996). Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci. Molecular Ecology 5, 629–640.
Population structure of the yellow-footed rock-wallaby Petrogale xanthopus (Gray, 1854) inferred from mtDNA sequences and microsatellite loci.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmsValsb4%3D&md5=cf0dccb0d46f25fbd3e3208b3631e1caCAS |

Pope, L. C., Estoup, A., and Moritz, C. (2000). Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites. Molecular Ecology 9, 2041–2053.
Phylogeography and population structure of an ecotonal marsupial, Bettongia tropica, determined using mtDNA and microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Oksg%3D%3D&md5=95e162e3e4e1af9095d69e2973ffe7f4CAS |

Pope, L. C., Blair, D., and Johnson, C. N. (2005). Dispersal and population structure of the rufous bettong, Aepyprymnus rufescens (Marsupialia: Potoroidae). Austral Ecology 30, 572–580.
Dispersal and population structure of the rufous bettong, Aepyprymnus rufescens (Marsupialia: Potoroidae).Crossref | GoogleScholarGoogle Scholar |

Queller, D. C., and Goodnight, K. F. (1989). Estimating relatedness using genetic markers. Evolution 43, 258–275.
Estimating relatedness using genetic markers.Crossref | GoogleScholarGoogle Scholar |

Quinn, G., and Keough, M. (2002). ‘Experimental Design and Data Analysis for Biologists.’ (Cambridge University Press: Cambridge.)

Rasmussen, H. B., Okello, J. B. A., Wittemyer, G., Siegismund, H. R., Arctander, P., Vollrath, F., and Douglas-Hamilton, I. (2008). Age- and tactic-related paternity success in male African elephants. Behavioral Ecology 19, 9–15.
Age- and tactic-related paternity success in male African elephants.Crossref | GoogleScholarGoogle Scholar |

Raymond, M., and Rousset, F. (1995). GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Sander, U., Short, J., and Turner, B. (1997). Social organisation and warren use of the burrowing bettong, Bettongia lesueur (Macropodoidea: Potoroidae). Wildlife Research 24, 143–157.
Social organisation and warren use of the burrowing bettong, Bettongia lesueur (Macropodoidea: Potoroidae).Crossref | GoogleScholarGoogle Scholar |

Schulke, O., Kappeler, P. M., and Zischler, H. (2004). Small testes size despite high extra-pair paternity in the pair-living nocturnal primate Phaner furcifer. Behavioral Ecology and Sociobiology 55, 293–301.
Small testes size despite high extra-pair paternity in the pair-living nocturnal primate Phaner furcifer.Crossref | GoogleScholarGoogle Scholar |

Schwagmeyer, P. L. (1988). Scramble-competition polygyny in an asocial mammal: male mobility and mating success. American Naturalist 131, 885–892.
Scramble-competition polygyny in an asocial mammal: male mobility and mating success.Crossref | GoogleScholarGoogle Scholar |

Scotts, D., and Seebeck, J. H. (1989). Ecology of Potorous longipes (Marsupialia: Potoroidae) and preliminary recommendations for management of its habitat in Victoria. Arthur Rylah Institute for Environmental Research, Technical Report Series No. 62. Department of Conservation, Forests and Lands. Victoria.

Short, J. (1998). The extinction of rat-kangaroos (Marsupialia : Potoroidae) in New South Wales, Australia. Biological Conservation 86, 365–377.
The extinction of rat-kangaroos (Marsupialia : Potoroidae) in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Sigg, D. P., and Goldizen, A. W. (2006). Male reproductive tactics and female choice in the solitary, promiscuous bridled nailtail wallaby (Onychogalea fraenata). Journal of Mammalogy 87, 461–469.
Male reproductive tactics and female choice in the solitary, promiscuous bridled nailtail wallaby (Onychogalea fraenata).Crossref | GoogleScholarGoogle Scholar |

Spencer, P. B. S., Odorico, D. M., Jones, S. J., Marsh, H. D., and Miller, D. J. (1995). Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis). Molecular Ecology 4, 523–525.
Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFertLk%3D&md5=91b6629c6785a12ef163055c13332fecCAS |

Spencer, P. B. S., Horsup, A. B., and Marsh, H. D. (1998). Enhancement of reproductive success through mate choice in a social rock-wallaby, Petrogale assimilis (Macropodidae) as revealed by microsatellite markers. Behavioral Ecology and Sociobiology 43, 1–9.
Enhancement of reproductive success through mate choice in a social rock-wallaby, Petrogale assimilis (Macropodidae) as revealed by microsatellite markers.Crossref | GoogleScholarGoogle Scholar |

Sugg, D. W., Chesser, R. K., Dobson, F. S., and Hoogland, J. L. (1996). Population genetics meets behavioral ecology. Trends in Ecology & Evolution 11, 338–342.
Population genetics meets behavioral ecology.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFCqtA%3D%3D&md5=20c49d81b95a4b7bedbf6d8d58f02445CAS |

Taylor, A. C., and Cooper, D. W. (1998). A set of tammar wallaby (Macropus eugenii) microsatellites tested for genetic linkage. Molecular Ecology 7, 925–926.
| 1:CAS:528:DyaK1cXlsFKlur4%3D&md5=0185be412254d25a336135c8dbd4fb5fCAS |

Tyndale-Biscoe, H., and Renfree, M. (1987). ‘Reproductive Physiology of Marsupials.’ (Cambridge University Press: Cambridge.)

Van Dyck, S., and Strahan, R. (Eds) (2008). ‘Mammals of Australia.’ (New Holland Publishing: Sydney.)

Yue, G. H., and Chang, A. (2010). Molecular evidence for high frequency of multiple paternity in a freshwater shrimp species Caridina ensifera. PLoS ONE 5, e12721.
Molecular evidence for high frequency of multiple paternity in a freshwater shrimp species Caridina ensifera.Crossref | GoogleScholarGoogle Scholar |

Zenger, K. R., and Cooper, D. W. (2001a). A set of highly polymorphic microsatellite markers developed for the eastern grey kangaroo (Macropus giganteus). Molecular Ecology Notes 1, 98–100.
A set of highly polymorphic microsatellite markers developed for the eastern grey kangaroo (Macropus giganteus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlslaksbc%3D&md5=deb9d7ed2784929c9cd1bffe44d20943CAS |

Zenger, K. R., and Cooper, D. W. (2001b). Characterization of 14 macropod microsatellite genetic markers. Animal Genetics 32, 166–167.
Characterization of 14 macropod microsatellite genetic markers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXms1egtbw%3D&md5=93cdd5336cd50667a126a20b7f417145CAS |

Zenger, K. R., McKenzie, L. M., and Cooper, D. W. (2002). The first comprehensive genetic linkage map of a marsupial: the tammar wallaby (Macropus eugenii). Genetics 162, 321–330.
| 1:CAS:528:DC%2BD38Xotl2gsbk%3D&md5=556cbeced5409f38497feb0bf0789b22CAS |