Diversity of MHC class II DAB1 in the koala (Phascolarctos cinereus)
Sarah E. Jobbins A B , Claire E. Sanderson A , Joanna E. Griffith A , Mark B. Krockenberger A , Katherine Belov A and Damien P. Higgins AA Faculty of Veterinary Science, University of Sydney, NSW 2006, Australia.
B Corresponding author. Email: sjob3753@uni.sydney.edu.au
Australian Journal of Zoology 60(1) 1-9 https://doi.org/10.1071/ZO12013
Submitted: 26 January 2012 Accepted: 23 April 2012 Published: 18 June 2012
Abstract
The host immune response is an important factor determining the outcome of the host–pathogen–environment interaction. At the gateway between the innate and adaptive immune systems are MHC molecules, which facilitate antigen presentation to T lymphocytes, and initiate the adaptive immune response. Despite their integral role in adaptive immunity, the genes encoding class II MHC molecules have not been examined directly in koalas. Furthermore, indirect historical evidence suggests that this species might lack functional diversity in class II MHC genes, with potential implications for disease susceptibility. We have examined diversity in the β chain genes of the koala class II MHC DA gene family and identified 23 alleles, including several atypical alleles. The levels of diversity observed are consistent with other marsupial and eutherian species, and do not support the paucity of variation suggested by the early literature. These findings are relevant to the conservation management of koalas and provide both a benchmark for maintaining population diversity and a platform for further conservation genetic research in this species.
Additional keywords: major histocompatibility complex, marsupial.
References
Auffray, C., and Novotny, J. (1986). Speculations on sequence homologies between the fibronectin cell-attachment site, major histocompatibility antigens, and a putative AIDS virus polypeptide. Human Immunology 15, 381–390.| Speculations on sequence homologies between the fibronectin cell-attachment site, major histocompatibility antigens, and a putative AIDS virus polypeptide.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xkt1artLg%3D&md5=adead9f9b778db2ee89187e3531b9a88CAS |
Beck, T. W., Menninger, J., Voigt, G., Newmann, K., Nishigaki, Y., Nash, W. G., Stephens, R. M., Wang, Y., de Jong, P. J., O’Brien, S. J., and Yuhki, N. (2001). Comparative feline genomics: A BAC/PAC contig map of the major histocompatibility complex class II region. Genomics 71, 282–295.
| Comparative feline genomics: A BAC/PAC contig map of the major histocompatibility complex class II region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtV2nsrc%3D&md5=7e7152803fe3d8520e4ffa6ac38dd8a3CAS |
Belov, K., Lam, M. K. P., Hellman, L., and Colgan, D. J. (2003). Evolution of the major histocompatibility complex: isolation of class II beta cDNAs from two monotremes, the platypus and the short-beaked echidna. Immunogenetics 55, 402–411.
| Evolution of the major histocompatibility complex: isolation of class II beta cDNAs from two monotremes, the platypus and the short-beaked echidna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlelu7o%3D&md5=c7e42012fd003354e0ad02580e90a87aCAS |
Belov, K., Lam, M. K. P., and Colgan, D. J. (2004). Marsupial MHC class II beta genes are not orthologous to the eutherian beta gene families. The Journal of Heredity 95, 338–345.
| Marsupial MHC class II beta genes are not orthologous to the eutherian beta gene families.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXlsFyju7g%3D&md5=94cd88cf67d18b8d7a85a02ba2e48c8dCAS |
Belov, K., Deakin, J. E., Papenfuss, A. T., Baker, M. L., Melman, S. D., Siddle, H. V., Gouin, N., Goode, D. L., Sargeant, T. J., Robinson, M. D., Wakefield, M. J., Mahony, S., Cross, J. G. R., Benos, P. V., Samollow, P. B., Speed, T. P., Graves, J. A. M., and Miller, R. D. (2006). Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex. PLoS Biology 4, e46.
| Reconstructing an ancestral mammalian immune supercomplex from a marsupial major histocompatibility complex.Crossref | GoogleScholarGoogle Scholar |
Brown, J. H., Jardetzky, T. S., Gorga, J. C., Stern, L. J., Urban, R. G., Strominger, J. L., and Wiley, D. C. (1993). 3-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature 364, 33–39.
| 3-dimensional structure of the human class II histocompatibility antigen HLA-DR1.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXkslSjsrc%3D&md5=94f1a01e182aea921bb179edd10a3a3cCAS |
Browning, T. (2009). Inbreeding, the MHC and infectious disease susceptibility in the tammar wallaby, Macropus eugenii. Ph.D. Thesis, Macquarie University, Sydney.
Canfield, P. (1990). Disease studies on New South Wales koalas. In ‘Biology of the Koala’. (Eds A. K. Lee, K. A. Handasyde and G. D. Sanson.) pp. 249–254. (Surrey Beatty: Sydney.)
Cheng, Y., Siddle, H., Beck, S., Eldridge, M., and Belov, K. (2009). High levels of genetic variation at MHC class II DBB loci in the tammar wallaby (Macropus eugenii). Immunogenetics 61, 111–118.
| High levels of genetic variation at MHC class II DBB loci in the tammar wallaby (Macropus eugenii).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOntLs%3D&md5=2c75ecfaba549f689550e3f1404f1db3CAS |
Ekblom, R., Are Saether, S., Jacobsson, P., Fiske, P., Sahlman, T., Grahn, M., Atle Kalas, J., and Hoglund, J. (2007). Spatial pattern of MHC class II variation in the great snipe (Gallinago media). Molecular Ecology 16, 1439–1451.
| Spatial pattern of MHC class II variation in the great snipe (Gallinago media).Crossref | GoogleScholarGoogle Scholar |
Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=55ae185d7b41fdf60b2aff5bfaa20105CAS |
Fowler, E. V., Hoeben, P., and Timms, P. (1998). Randomly amplified polymorphic DNA variation in populations of eastern Australian koalas (Phascolarctos cinereus). Biochemical Genetics 36, 381–393.
| Randomly amplified polymorphic DNA variation in populations of eastern Australian koalas (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislGqs7Y%3D&md5=bb41dad86604c39eefe8c42ad9859e83CAS |
Gordon, G., and Hrdina, F. (2005). Koala and possum populations in Queensland during the harvest period, 1906–1936. Australian Journal of Zoology 33, 69–99.
Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=e4343c74d0e2bd1b7a459fe56994bdceCAS |
Holland, O. J., Cowan, P. E., Gleeson, D. M., and Chamley, L. W. (2008a). High variability in the MHC class II DA beta chain of the brushtail possum (Trichosurus vulpecula). Immunogenetics 60, 775–781.
| High variability in the MHC class II DA beta chain of the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWhsrnM&md5=b4d8ccd9da0559eb57a889ecfe96e633CAS |
Holland, O. J., Cowan, P. E., Gleeson, D. M., and Chamley, L. W. (2008b). Novel alleles in classical major histocompatibility complex class II loci of the brushtail possum (Trichosurus vulpecula). Immunogenetics 60, 449–460.
| Novel alleles in classical major histocompatibility complex class II loci of the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotV2jtL8%3D&md5=8ec8feec150dccdb7d96c414fcf42c7eCAS |
Houlden, B. A., England, P. R., Taylor, A. C., Greville, W. D., and Sherwin, W. B. (1996). Low genetic variability of the koala Phascolarctos cinereus in south-eastern Australia following a severe population bottleneck. Molecular Ecology 5, 269–281.
| 1:STN:280:DyaK283jvFKnsA%3D%3D&md5=fd5d737c52b25c35d3c0fab6bb4bdd86CAS |
Hughes, A. L., and Nei, M. (1988). Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection. Nature 335, 167–170.
| Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals overdominant selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXlvVCktrY%3D&md5=fc384292a0c98dd3102085e14a1fa57dCAS |
Hughes, A. L., and Nei, M. (1989). Nucleotide substitution at major histocompatibility complex class II loci – evidence for overdominant selection. Proceedings of the National Academy of Sciences of the United States of America 86, 958–962.
| Nucleotide substitution at major histocompatibility complex class II loci – evidence for overdominant selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXhsV2jsbs%3D&md5=53dcaec804708d0065575c1fc38fe11bCAS |
Hughes, A. L., and Nei, M. (1990). Evolutionary relationships of class II major histocompatibility complex genes in mammals. Molecular Biology and Evolution 7, 491–514.
| 1:CAS:528:DyaK3MXhvVKltw%3D%3D&md5=90622ef1841ca88096f5230ab0d13dbaCAS |
Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In ‘Mammalian Protein Metabolism’. (Ed. H. N. Munro.) pp. 21–132. (Academic Press: New York.)
Kappes, D., and Strominger, J. L. (1988). Human class II major histocompatibility complex genes and proteins. Annual Review of Biochemistry 57, 991–1028.
| Human class II major histocompatibility complex genes and proteins.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXkvVOjt7w%3D&md5=f96b6cab4279853144a291cd56c5796eCAS |
Kennedy, L. J., Ryvar, R., Gaskell, R. M., Addie, D. D., Willoughby, K., Carter, S. D., Thomson, W., Ollier, W. E. R., and Radford, A. D. (2002). Sequence analysis of MHC DRB alleles in domestic cats from the United Kingdom. Immunogenetics 54, 348–352.
| Sequence analysis of MHC DRB alleles in domestic cats from the United Kingdom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvFylt74%3D&md5=4a0086da56a091ee9611daa8eeba170bCAS |
Klein, J., and O’hUigin, C. (1994). The conundrum of nonclassical major histocompatibility complex genes. Proceedings of the National Academy of Sciences of the United States of America 91, 6251–6252.
| The conundrum of nonclassical major histocompatibility complex genes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVKjurk%3D&md5=a1ea7ead0bac5dec03e3ecdd552e8a78CAS |
Klein, J., Bontrop, R. E., Dawkins, R. L., Erlich, H. A., Gyllensten, U. B., Heise, E. R., et al (1990). Nomenclature for the major histocompatibility complexes of different species – a proposal. Immunogenetics 31, 217–219.
| 1:CAS:528:DyaK3cXlsFSiu7c%3D&md5=4c94360fea11676e3438b9c514a07a43CAS |
Krockenberger, M. B., Canfield, P. J., Barnes, J., Vogelnest, L., Connolly, J., Ley, C., and Malik, R. (2002). Cryptococcus neoformans var. gattii in the koala (Phascolarctos cinereus): serological evidence for subclinical cryptococcosis. Medical Mycology 40, 273–282.
| 1:STN:280:DC%2BD38zpslerug%3D%3D&md5=a038f94be964e099757a3c0495d57fb7CAS |
Lam, M. K. P., Belov, K., Harrison, G. A., and Cooper, D. W. (2001). Cloning of the MHC class II DRB cDNA from the brushtail possum (Trichosurus vulpecula). Immunology Letters 76, 31–36.
| Cloning of the MHC class II DRB cDNA from the brushtail possum (Trichosurus vulpecula).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXht12gurs%3D&md5=28d5445075e12e07d1cd3af291fc3541CAS |
Lee, K., Seddon, J., Corley, S., Ellis, W., Johnston, S., de Villiers, D., Preece, H., and Carrick, F. (2010). Genetic variation and structuring in the threatened koala populations of southeast Queensland. Conservation Genetics 11, 2091–2103.
| Genetic variation and structuring in the threatened koala populations of southeast Queensland.Crossref | GoogleScholarGoogle Scholar |
Loiseau, C., Richard, M., Garnier, S., Chastel, O., Julliard, R., Zoorob, R., and Sorci, G. (2009). Diversifying selection on MHC class I in the house sparrow (Passer domesticus). Molecular Ecology 18, 1331–1340.
| Diversifying selection on MHC class I in the house sparrow (Passer domesticus).Crossref | GoogleScholarGoogle Scholar |
Mason, R., Browning, T., and Eldridge, M. (2011). Reduced MHC class II diversity in island compared to mainland populations of the black-footed rock-wallaby (Petrogale lateralis lateralis). Conservation Genetics 12, 91–103.
| Reduced MHC class II diversity in island compared to mainland populations of the black-footed rock-wallaby (Petrogale lateralis lateralis).Crossref | GoogleScholarGoogle Scholar |
Mazerolles, F., Durandy, A., Piatiertonneau, D., Charron, D., Montagnier, L., Auffray, C., and Fischer, A. (1988). Immunosuppressive properties of synthetic peptides derived from CD4 and HLA-DR antigens. Cell 55, 497–504.
| Immunosuppressive properties of synthetic peptides derived from CD4 and HLA-DR antigens.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXit1WmsA%3D%3D&md5=3f6299f3fc83499c9b36c72e0f6b911cCAS |
McLean, N. (2003). Ecology and management of overabundant koala (Phascolarctos cinereus) populations. Ph.D. Thesis, The University of Melbourne.
Meyer-Lucht, Y., Otten, C., Puettker, T., and Sommer, S. (2008). Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials. BMC Genetics 9, 39.
| Selection, diversity and evolutionary patterns of the MHC class II DAB in free-ranging Neotropical marsupials.Crossref | GoogleScholarGoogle Scholar |
Meyer-Lucht, Y., Otten, C., Puettker, T., Pardini, R., Metzger, J. P., and Sommer, S. (2010). Variety matters: adaptive genetic diversity and parasite load in two mouse opossums from the Brazilian Atlantic forest. Conservation Genetics 11, 2001–2013.
| Variety matters: adaptive genetic diversity and parasite load in two mouse opossums from the Brazilian Atlantic forest.Crossref | GoogleScholarGoogle Scholar |
O’hUigin, C., Sultmann, H., Tichy, H., and Murray, B. W. (1998). Isolation of MHC class II DMA and DMB cDNA sequences in a marsupial: the gray short-tailed opossum (Monodelphis domestica). Journal of Molecular Evolution 47, 578–585.
| Isolation of MHC class II DMA and DMB cDNA sequences in a marsupial: the gray short-tailed opossum (Monodelphis domestica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXntFWhsbo%3D&md5=c14b74ce74c061bae0a3f19e9fd48ca4CAS |
Saitou, N., and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406–425.
| 1:STN:280:DyaL1c7ovFSjsA%3D%3D&md5=0fb2801eef5030203c005d45770ce642CAS |
Seymour, A. M., Montgomery, M. E., Costello, B. H., Ihle, S., Johnsson, G., St John, B., Taggart, D., and Houlden, B. A. (2001). High effective inbreeding coefficients correlate with morphological abnormalities in populations of South Australian koalas (Phascolarctos cinereus). Animal Conservation 4, 211–219.
| High effective inbreeding coefficients correlate with morphological abnormalities in populations of South Australian koalas (Phascolarctos cinereus).Crossref | GoogleScholarGoogle Scholar |
Siddle, H. V., Kreiss, A., Eldridge, M. D. B., Noonan, E., Clarke, C. J., Pyecroft, S., Woods, G. M., and Belov, K. (2007). Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial. Proceedings of the National Academy of Sciences of the United States of America 104, 16 221–16 226.
| Transmission of a fatal clonal tumor by biting occurs due to depleted MHC diversity in a threatened carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2gsr7I&md5=9311f031d82eb1274f9e53c335472082CAS |
Siddle, H. V., Deakin, J. E., Coggill, P., Wilming, L. G., Harrow, J., Kaufman, J., Beck, S., and Belov, K. (2011). The tammar wallaby major histocompatibility complex shows evidence of past genomic instability. BMC Genomics 12, 421–435.
| The tammar wallaby major histocompatibility complex shows evidence of past genomic instability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFyht7jF&md5=c4fa3765a2839ec4ff948d83dd036cd8CAS |
Smith, S., Belov, K., and Hughes, J. (2010). MHC screening for marsupial conservation: extremely low levels of class II diversity indicate population vulnerability for an endangered Australian marsupial. Conservation Genetics 11, 269–278.
| MHC screening for marsupial conservation: extremely low levels of class II diversity indicate population vulnerability for an endangered Australian marsupial.Crossref | GoogleScholarGoogle Scholar |
Sommer, S. (2005). The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Frontiers in Zoology 2, 16.
| The importance of immune gene variability (MHC) in evolutionary ecology and conservation.Crossref | GoogleScholarGoogle Scholar |
Stone, W. H., Bruun, D. A., Fuqua, C., Glass, L. C., Reeves, A., Holste, S., and Figueroa, F. (1999). Identification and sequence analysis of an MHC class II B gene in a marsupial (Monodelphis domestica). Immunogenetics 49, 461–463.
| Identification and sequence analysis of an MHC class II B gene in a marsupial (Monodelphis domestica).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXitVKmtrk%3D&md5=b74702005a3e221ae9a0aa60ee22ad80CAS |
Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24, 1596–1599.
| MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrsL8%3D&md5=ba9bf93ad2e94a45638321f2899cb009CAS |
Taylor, A. C., Graves, J. A. M., Murray, N. D., and Sherwin, W. B. (1991). Conservation genetics of the koala (Phascolarctos cinereus). 2. Limited variability in minisatellite DNA sequences. Biochemical Genetics 29, 355–363.
| Conservation genetics of the koala (Phascolarctos cinereus). 2. Limited variability in minisatellite DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmsV2nt7g%3D&md5=5e3d5978eea1c94518d46948b9f4625bCAS |
Taylor, A. C., Graves, J. M., Murray, N. D., Obrien, S. J., Yuhki, N., and Sherwin, B. (1997). Conservation genetics of the koala (Phascolarctos cinereus): low mitochondrial DNA variation amongst southern Australian populations. Genetical Research 69, 25–33.
| Conservation genetics of the koala (Phascolarctos cinereus): low mitochondrial DNA variation amongst southern Australian populations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjvVOksLo%3D&md5=d5b4f98f6080c2724aeefddeec1507c8CAS |
Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research 22, 4673–4680.
| CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXitlSgu74%3D&md5=4f0678b13e5d7904657778cff18d2cf2CAS |
Wilkinson, R., Kotlarski, I., and Barton, M. (1992). Koala lymphoid cells: analysis of antigen-specific responses. Veterinary Immunology and Immunopathology 33, 237–247.
| Koala lymphoid cells: analysis of antigen-specific responses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zotlyjtg%3D%3D&md5=7af3c66092d556f024ea3deaf6282d30CAS |
Wilkinson, R., Kotlarski, I., and Barton, M. (1994). Further characterisation of the immune response of the koala. Veterinary Immunology and Immunopathology 40, 325–339.
| Further characterisation of the immune response of the koala.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXksFGrsbw%3D&md5=5c782c40600ff9ab1f79c5e96dc999b2CAS |
Yang, Z. H. (2007). PAML 4: phylogenetic analysis by maximum likelihood. Molecular Biology and Evolution 24, 1586–1591.
| PAML 4: phylogenetic analysis by maximum likelihood.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpsVGrs7c%3D&md5=8ca9695f606a4550d7b09ab43ae229c6CAS |
Yang, Z. H., Wong, W. S. W., and Nielsen, R. (2005). Bayes Empirical Bayes inference of amino acid sites under positive selection. Molecular Biology and Evolution 22, 1107–1118.
| Bayes Empirical Bayes inference of amino acid sites under positive selection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtFaisbk%3D&md5=150ed9177b8455579a59320184ca3945CAS |