Rate of passage through the digestive tract of the kultarr (Antechinomys laniger)
Hayley J. Stannard A B and Julie M. Old AA Native and Pest Animal Unit, School of Natural Sciences, University of Western Sydney, Hawkesbury Campus Bldg K8, Locked Bag 1797, Penrith, NSW 2751, Australia.
B Corresponding author. Email: h.stannard@uws.edu.au
Australian Journal of Zoology 59(4) 273-276 https://doi.org/10.1071/ZO11103
Submitted: 2 June 2011 Accepted: 2 February 2012 Published: 17 February 2012
Abstract
The kultarr (Antechinomys laniger) is a small insectivorous marsupial that has undergone significant declines in geographical range. Limited studies have been undertaken on kultarr biology and therefore there is a lack of understanding of its basic biological and ecological requirements. Rate of passage in the kultarr, determined using mealworm cuticle as a marker in minced beef, was 1.6 ± 0.2 h and mean retention time was 3.9 ± 1.2 h. The rapid transit time was consistent for an animal of equivalent body mass, dietary preference and gastrointestinal tract morphology. Mean retention time was short, similar to that of other mammals with a small body mass. This study provides the first insight into gastrointestinal physiology of the little known kultarr.
Additional keywords: alimentary canal, dasyurid, insectivore, marsupial, transit time.
References
Attwood, H. D., and Woolley, P. (1970). Toxoplasmosis in dasyurid marsupials. Pathology 2, 77–78.Baudinette, R. V., Nagle, K. A., and Scott, R. A. D. (1976). Locomotory energetics in a marsupial (Antechinomys laniger) and a rodent (Notomys alexis). Cellular and Molecular Life Sciences 32, 583–585.
| Locomotory energetics in a marsupial (Antechinomys laniger) and a rodent (Notomys alexis).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE283htVGhsw%3D%3D&md5=053c086bf619b85cb8386110ebdfd32cCAS |
Cowan, I. McT., O’Riordan, A. M., and Cowan, J. S. McT. (1974). Energy requirements of the dasyurid marsupial mouse Antechinus swainsonii (Waterhouse). Canadian Journal of Zoology 52, 269–275.
| Energy requirements of the dasyurid marsupial mouse Antechinus swainsonii (Waterhouse).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE2c7isFOiuw%3D%3D&md5=cf346e5b9bd5757aeac728cc72d39999CAS |
Dawson, N. J. (1972). Rate of passage of a non-absorbable marker through the gastrointestinal tract of the mouse (Mus musculus). Comparative Biochemistry and Physiology. A. Comparative Physiology 41, 877–881.
| Rate of passage of a non-absorbable marker through the gastrointestinal tract of the mouse (Mus musculus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE387osFCmtQ%3D%3D&md5=ed5edcc06a4e9b11df348d6bc4b9527cCAS |
Foley, W. J., and Hume, I. D. (1987). Passage of digesta markers in two species of arboreal folivorous marsupials: the greater glider (Petauroides volans) and the brushtail possum (Trichosurus vulpecula). Physiological Zoology 60, 103–113.
Geiser, F. (1986). Thermoregulation and torpor in the kultarr, Antechinomys laniger (Marsupialia: Dasyuridae). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 156, 751–757.
| Thermoregulation and torpor in the kultarr, Antechinomys laniger (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar |
Green, B., and Eberhard, I. (1979). Energy requirements and sodium and water turnovers in two captive marsupial carnivores: the Tasmanian devil, Sarcophilus harrisii, and the native cat, Dasyurus viverrinus. Australian Journal of Zoology 27, 1–8.
| Energy requirements and sodium and water turnovers in two captive marsupial carnivores: the Tasmanian devil, Sarcophilus harrisii, and the native cat, Dasyurus viverrinus.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXksFGjt7k%3D&md5=0255f36845fb66ba3f524ccd7ad15187CAS |
Griffiths, M. (1965). Digestion, growth and nitrogen balance in an egg-laying mammal, Tachyglossus aculeatus (Shaw). Comparative Biochemistry and Physiology 14, 357–375.
| Digestion, growth and nitrogen balance in an egg-laying mammal, Tachyglossus aculeatus (Shaw).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF28XltFSmu7s%3D&md5=1ddb43360c7e6e2b33e837b4fa1dca22CAS |
Gusztak, R. W., MacArthur, R. A., and Campbell, K. L. (2005). Bioenergetics and thermal physiology of American water shrews (Sorex palustris). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 175, 87–95.
| Bioenergetics and thermal physiology of American water shrews (Sorex palustris).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2M%2FpsFOjsg%3D%3D&md5=dc45c9fd678f9e19fdaf3e86c2161fd3CAS |
Harlow, H. J. (1981). Effect of fasting on rate of passage and assimilation efficiency in badgers. Journal of Mammalogy 62, 173–177.
| Effect of fasting on rate of passage and assimilation efficiency in badgers.Crossref | GoogleScholarGoogle Scholar |
Hume, I. D. (1999). ‘Marsupial Nutrition.’ (Cambridge University Press: Cambridge.)
Hume, I. D., Smith, C., and Woolley, P. A. (2000). Anatomy and physiology of the gastrointestinal tract of the Julia Creek dunnart, Sminthopsis douglasi (Marsupialia: Dasyuridae). Australian Journal of Zoology 48, 475–485.
| Anatomy and physiology of the gastrointestinal tract of the Julia Creek dunnart, Sminthopsis douglasi (Marsupialia: Dasyuridae).Crossref | GoogleScholarGoogle Scholar |
Lidicker, W. Z., and Marlow, B. J. (1970). A review of the dasyurid marsupial genus Antechinomys Krefft. Mammalia 34, 212–227.
| A review of the dasyurid marsupial genus Antechinomys Krefft.Crossref | GoogleScholarGoogle Scholar |
Marlow, B. J. (1969). A comparison of two desert-living Australian mammals, Antecinomys spenceri (Marsupialia: Dasyuridae) and Notomys cervinus (Rodentia: Muridae). Journal of Zoology 157, 159–167.
| A comparison of two desert-living Australian mammals, Antecinomys spenceri (Marsupialia: Dasyuridae) and Notomys cervinus (Rodentia: Muridae).Crossref | GoogleScholarGoogle Scholar |
Morris, K., Woinarski, J., Ellis, M., Robinson, T., and Copley, P. (2008). Antechinomys laniger In ‘IUCN 2009: IUCN Red List of Threatened Species.’ Version 2009.1. Available at: www.iucnredlist.org [accessed 23 July 2009]
Moyle, D. I., Hume, I. D., and Hill, D. M. (1995). Digestive performance and selective digesta retention in the long-nosed bandicoot, Perameles nasuta, a small omnivorous marsupial. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 164, 552–560.
| Digestive performance and selective digesta retention in the long-nosed bandicoot, Perameles nasuta, a small omnivorous marsupial.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M7ptVWgsg%3D%3D&md5=c49c853bee0db1b62cf7786ed955c59bCAS |
Munn, A. J., Kern, P., and McAllan, B. M. (2010). Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata). Naturwissenschaften 97, 601–605.
| Coping with chaos: unpredictable food supplies intensify torpor use in an arid-zone marsupial, the fat-tailed dunnart (Sminthopsis crassicaudata).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtVyrtLw%3D&md5=74c6d90d8644dda8422f07101f20dabaCAS |
Ng, K., Vozzo, R., Hope, P. J., Chapman, I. M., Morely, J. E., Horowitz, M., and Wittert, G. A. (1999). Effect of dietary macronutrients on food intake, body weight, and tail width in the marsupial S. crassicaudata. Physiology & Behavior 66, 131–136.
| Effect of dietary macronutrients on food intake, body weight, and tail width in the marsupial S. crassicaudata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXisFWls7k%3D&md5=a4917e201d3c9aa0fea7a378c89de958CAS |
Pollock, K., Booth, K., Wilson, R., Keeley, T., Grogan, K., Kennerley, P., and Johnston, S. D. (2010). Oestrus in the Julia Creek dunnart (Sminthopsis douglasi) is associated with wheel running behaviour but not necessarily changes in body weight, food consumption or pouch morphology. Animal Reproduction Science 117, 135–146.
| Oestrus in the Julia Creek dunnart (Sminthopsis douglasi) is associated with wheel running behaviour but not necessarily changes in body weight, food consumption or pouch morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtlyjt7vL&md5=aa315016332cba164b7c96db23726164CAS |
Read, D. G. (1987). Rate of food passage in Planigale spp. (Marsupialia: Dasyuridae). Australian Mammalogy 10, 27–28.
Robbins, C. T. (1993). ‘Wildlife Feeding and Nutrition.’ (Academic Press: New York.)
Selwood, L., and Cui, S. (2006). Establishing long-term colonies of marsupials to provide models for studying developmental mechanisms and their application to fertility control. Australian Journal of Zoology 54, 197–209.
| Establishing long-term colonies of marsupials to provide models for studying developmental mechanisms and their application to fertility control.Crossref | GoogleScholarGoogle Scholar |
Sibbald, I. R., Sinclair, G. G., Evans, E. V., and Smith, D. L. T. (1962). The rate of passage of feed through the digestive tract of the mink. Canadian Journal of Biochemistry and Physiology 40, 1391–1394.
| The rate of passage of feed through the digestive tract of the mink.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaF387gsVSksg%3D%3D&md5=1db76e1e47277581edf577b0d1b777d3CAS |
Valente, A. (2008). Kultarr. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 122–124. (New Holland: Sydney.)
Woodall, P. F., and Currie, G. J. (1989). Food consumption, assimilation and rate of food passage in the Cape rock elephant shrew, Elephantulus edwardii (Macroscelidea: Macroscelidinae). Comparative Biochemistry and Physiology. A. Comparative Physiology 92, 75–79.
| Food consumption, assimilation and rate of food passage in the Cape rock elephant shrew, Elephantulus edwardii (Macroscelidea: Macroscelidinae).Crossref | GoogleScholarGoogle Scholar |
Woolley, P. A. (1982). The laboratory maintenance of dasyurid marsupials. In ‘Management of Australian Mammals in Captivity’. (Ed. D. D. Evans.) pp. 13–21. (Zoological Board of Victoria: Melbourne.)