Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Genetic differentiation and introgression amongst Thylogale (pademelons) taxa in eastern Australia

M. D. B. Eldridge A B H , K. Heckenberg C , L. E. Neaves A D , C. J. Metcalfe B E , S. Hamilton F , P. M. Johnson G and R. L. Close C
+ Author Affiliations
- Author Affiliations

A Molecular Genetics, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.

B Department of Biological Sciences, Macquarie University, NSW 2109, Australia.

C School of Biomedical and Health Sciences, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia.

D Current Address: Royal Botanic Garden, Edinburgh, EH3 5LR, UK.

E Current Address: Institute of Biosciences, University of São Paulo, São Paulo, SP 05508-090, Brazil.

F School of Biological, Earth and Environmental Sciences, University of New South Wales, NSW 2052, Australia.

G Queensland Parks and Wildlife Service, Northern Regional Centre, Pallarenda, PO Box 5597, Townsville Mail Centre, Qld 4810, Australia.

H Corresponding author. Email: mark.eldridge@austmus.gov.au

Australian Journal of Zoology 59(2) 103-117 https://doi.org/10.1071/ZO11022
Submitted: 18 March 2011  Accepted: 26 June 2011   Published: 7 October 2011

Abstract

Although pademelons (Thylogale) are widespread and common in coastal eastern Australia, they have been largely neglected in population genetic studies. Here we use 10 microsatellite loci and the mitochondrial DNA (mtDNA) cytochrome b (Cytb) gene to examine genetic differentiation amongst populations of the red-necked (Thylogale thetis) and red-legged (T. stigmatica) pademelon in eastern Australia. Evidence of hybridisation was detected between subspecies of T. stigmatica in central Queensland. Specimens sampled between Eungella and Sarina were found to represent a broad (~90 km) zone of introgression, for both nuclear and mtDNA markers, between T. s. stigmatica (Wet Tropics) and T. s. wilcoxi (south-east Queensland). In addition, individuals sampled from around Proserpine were genetically T. s. stigmatica rather than T. s. wilcoxi, as had previously been assumed. This observation raises some intriguing questions about the dispersal ability of T. stigmatica and the phylogeographic history of moist forest taxa in eastern Australia. Only limited evidence of introgression was detected between sympatric populations of T. thetis and T. s. wilcoxi in south-east Queensland.

Additional keywords: Macropodidae, marsupial, microsatellites, mitochondrial DNA, phylogeography.


References

Avise, J. C. (2004). ‘Molecular Markers, Natural History and Evolution.’ 2nd edn. (Sinauer Associates: Sunderland, MA.)

Avise, J. C., Walker, D., and Johns, G. C. (1998). Speciation durations and Pleistocene effects on vertebrate phylogeography. Proceedings of the Royal Society of London. Series B. Biological Sciences 265, 1707–1712.
Speciation durations and Pleistocene effects on vertebrate phylogeography.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK1M%2FgtlOgtw%3D%3D&md5=d5e8516320eb36bd73cb7bcc744ca58fCAS |

Brown, M., Cooksley, H., Carthew, S. M., and Cooper, S. J. B. (2006). Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis). Australian Journal of Zoology 54, 305–317.
Conservation units and phylogeographic structure of an arboreal marsupial, the yellow-bellied glider (Petaurus australis).Crossref | GoogleScholarGoogle Scholar |

Brown, W. M., George, M., and Wilson, A. C. (1979). Rapid evolution of animal mitochondrial DNA. Proceedings of the National Academy of Sciences of the United States of America 76, 1967–1971.
Rapid evolution of animal mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXktVWmsb8%3D&md5=a7d5cdb5f578af414caf003427ec94a5CAS |

Browning, T. L., Taggart, D. A., Rummery, C., Close, R. L., and Eldridge, M. D. B. (2001). Multifaceted genetic analysis of the “Critically Endangered” brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management. Conservation Genetics 2, 145–156.
Multifaceted genetic analysis of the “Critically Endangered” brush-tailed rock-wallaby Petrogale penicillata in Victoria, Australia: implications for management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXotFGgs74%3D&md5=cddaeaef3fc3956d31f4589029943273CAS |

Bulazel, K., Ferreri, G. C., Eldridge, M. D. B., and O’Neill, R. J. (2007). Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biology 8, R170.
Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages.Crossref | GoogleScholarGoogle Scholar |

Close, R. L., and Bell, J. N. (1997). Fertile hybrids in two genera of wallabies. Petrogale and Thylogale. The Journal of Heredity 88, 393–397.
| 1:STN:280:DyaK1c%2FhvVSkug%3D%3D&md5=1ad75f5ca228dfdbf94c6f8e9c8291a7CAS |

Eldridge, M. D. B. (2010). Population and conservation genetics of marsupials. In ‘Marsupial Genetics and Genomics’. (Eds J. E Deakin, P. D. Waters and J. A. M. Graves.) pp. 461–497. (Springer: Dordrecht.)

Eldridge, M. D. B., Johnston, P. G., and Close, R. L. (1992). Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VI. Determination of the plesiomorphic karyotype: G- banding comparison of Thylogale with Petrogale persephone, P. xanthopus, and P. l. lateralis. Cytogenetics and Cell Genetics 61, 29–33.
Chromosomal rearrangements in rock wallabies, Petrogale (Marsupialia: Macropodidae). VI. Determination of the plesiomorphic karyotype: G- banding comparison of Thylogale with Petrogale persephone, P. xanthopus, and P. l. lateralis.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK38zntFSgug%3D%3D&md5=05ee9f1c0e55332c69ea539d3ea36616CAS |

Eldridge, M. D. B., Piggott, M. P., and Hazlitt, S. L. (2010). Population genetic studies of the Macropodoidea: a review. In ‘Macropods: the Biology of Kangaroos, Wallabies and Rat-kangaroos’. (Eds G. M. Coulson and M. D. B. Eldridge.) pp. 35–51. (CSIRO Publishing: Melbourne.)

Evanno, G., Regnaut, S., and Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology 14, 2611–2620.
Detecting the number of clusters of individuals using the software Structure: a simulation study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmvF2qtrg%3D&md5=64bbcc8a498586c404a91160ca662c8cCAS |

Firestone, K. B., Elphinstone, M. S., Sherwin, W. B., and Houlden, B. A. (1999). Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial. Molecular Ecology 8, 1613–1625.
Phylogeographical population structure of tiger quolls Dasyurus maculatus (Dasyuridae: Marsupialia), an endangered carnivorous marsupial.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c%2FltFansA%3D%3D&md5=9637aa1b87cd6a20ddf831281d353b46CAS |

Flannery, T. F. (1995). ‘Mammals of New Guinea.’ (Reed Books: Sydney.)

Ford, J. (1987). Hybrid zones in Australian birds. Emu 87, 158–178.
Hybrid zones in Australian birds.Crossref | GoogleScholarGoogle Scholar |

Gillooly, J. F., Allen, A. P., West, G. B., and Brown, J. H. (2005). The rate of DNA evolution; effects of body size and temperature on the molecular clock. Proceedings of the National Academy of Sciences of the United States of America 102, 140–145.
The rate of DNA evolution; effects of body size and temperature on the molecular clock.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmtlehug%3D%3D&md5=381112744175c8d76792a2340bafa7a8CAS |

Goudet, J. (1995). Fstat (Version 1.2): a computer program to calculate F-statistics. The Journal of Heredity 86, 485–486.

Griffith, J. E., Beveridge, I., Chilton, N. B., and Johnson, P. M. (2000). Helminth communities of pademelons, Thylogale stigmatica and T. thetis from eastern Australia and Papua New Guinea. Journal of Helminthology 74, 307–314.
| 1:STN:280:DC%2BD3M7jtlehuw%3D%3D&md5=17feedd90dd650b8af1eec7e464342fcCAS |

Hayman, D. L., and Martin, P. G. (1974). ‘Mammalia I: Monotremata and Marsupialia.’ (Gebrüder Borntraeger: Berlin.)

Hocknull, S. A., Zhao, J., Feng, Y., and Webb, G. E. (2007). Responses of Quaternary rainforest vertebrates to climate change in Australia. Earth and Planetary Science Letters 264, 317–331.
Responses of Quaternary rainforest vertebrates to climate change in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlahsbzF&md5=baeaa24733caf96d992c9fd60ad59c4bCAS |

Johnson, K. A. (2008). Red-necked pademelon Thylogale thetis. In ‘The Mammals of Australia’. 3rd edn. (Eds S. Van Dyck and R. Strahan.) pp. 400–401. (New Holland: Sydney.)

Johnson, P. M. (2003). ‘Kangaroos of Queensland.’ (Queensland Museum: Brisbane.)

Johnson, P. M., and Vernes, K. (2008). Red-legged pademelon Thylogale stigmatica. In ‘The Mammals of Australia’. 3rd edn. (Eds S Van Dyck and R Strahan.) pp. 397–400. (New Holland: Sydney.)

Joseph, L., and Moritz, C. (1993). Phylogeny and historical aspects of the ecology of eastern Australian scrubwrens Sericornis spp. – evidence from mitochondrial DNA. Molecular Ecology 2, 161–170.
Phylogeny and historical aspects of the ecology of eastern Australian scrubwrens Sericornis spp. – evidence from mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2c3itFaquw%3D%3D&md5=bb664fe31462f101a3c8776ebf334087CAS |

Joseph, L., and Moritz, C. (1994). Mitochondrial DNA phylogeography of birds in eastern Australian rainforests: first fragments. Australian Journal of Zoology 42, 385–403.
Mitochondrial DNA phylogeography of birds in eastern Australian rainforests: first fragments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmt1Krsrw%3D&md5=b1727cad1b8e0c28a733621ff3213a4dCAS |

Joseph, L., Moritz, C., and Hugall, A. (1995). Molecular support for vicariance as a source of diversity in rainforest. Proceedings of the Royal Society of London. Series B. Biological Sciences 260, 177–182.
Molecular support for vicariance as a source of diversity in rainforest.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2Mzgtlyruw%3D%3D&md5=f2234039267c403c2538bed7ee5a3269CAS |

Joseph, L., Dolman, G., Donnellan, S., Saint, K. M., Berg, M. L., and Bennett, T. D. (2008). Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots. Proceedings of the Royal Society of London. Series B. Biological Sciences 275, 2431–2440.
Where and when does a ring start and end? Testing the ring-species hypothesis in a species complex of Australian parrots.Crossref | GoogleScholarGoogle Scholar |

Kirsch, J. A. W., Lapointe, F. J., and Springer, M. S. (1997). DNA-hybridisation studies of marsupials and their implications for metatherian classification. Australian Journal of Zoology 45, 211–280.
DNA-hybridisation studies of marsupials and their implications for metatherian classification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmt1Oqtbg%3D&md5=f90eb01dbb0d1747d4af8f4a24f8feaeCAS |

Kocher, T. D., Thomas, W. K., Meyer, A., Edwards, S. V., Pääbo, S., Villablanca, F. X., and Wilson, A. C. (1989). Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proceedings of the National Academy of Sciences of the United States of America 86, 6196–6200.
Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlvV2ksbw%3D&md5=479a5e76bf5bb8cd7e5627736d580c89CAS |

Krajewski, C., Blacket, M. J., Buckley, L., and Westerman, M. (1997). A multigene assessment of phylogentic relationships within the dasyurid marsupial subfamily Sminthopsinae. Molecular Phylogenetics and Evolution 8, 236–248.
A multigene assessment of phylogentic relationships within the dasyurid marsupial subfamily Sminthopsinae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXmsVamu7o%3D&md5=13676795d660f665e5d58458696a201fCAS |

MacQueen, P., Goldizen, A. W., and Seddon, J. M. (2009). Response of a southern temperate marsupial, the Tasmanian pademelon (Thylogale billardierii), to historical and contemporary forest fragmentation. Molecular Ecology 18, 3291–3306.
Response of a southern temperate marsupial, the Tasmanian pademelon (Thylogale billardierii), to historical and contemporary forest fragmentation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtFaisbrI&md5=6da2378eb5567a4ca34a4fc73558dd1dCAS |

MacQueen, P., Seddon, J. M., Austin, J. J., Hamilton, S., and Goldizen, A. W. (2010). Phylogenetics of the pademelons (Macropodidae: Thylogale) and historical biogeography of the Australo-Papuan region. Molecular Phylogenetics and Evolution 57, 1134–1148.
Phylogenetics of the pademelons (Macropodidae: Thylogale) and historical biogeography of the Australo-Papuan region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFajs7zM&md5=9f28793d460fda95c5b00a27fdb2b59cCAS |

Meredith, R. W., Westerman, M., and Springer, M. S. (2008). A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes: Marsupialia) based on nuclear DNA sequences. Australian Journal of Zoology 56, 395–410.
A phylogeny and timescale for the living genera of kangaroos and kin (Macropodiformes: Marsupialia) based on nuclear DNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjsFWrtLs%3D&md5=a465f74fa0db828f23cf726a27e0ef87CAS |

Moritz, C., Patton, J. L., Schneider, C. J., and Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics 31, 533–563.
Diversification of rainforest faunas: an integrated molecular approach.Crossref | GoogleScholarGoogle Scholar |

Neaves, L. E., Zenger, K. R., Cooper, D. W., and Eldridge, M. D. B. (2010). Molecular detection of hybridization between sympatric kangaroo species in south-eastern Australia. Heredity 104, 502–512.
Molecular detection of hybridization between sympatric kangaroo species in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3c3nsFSitA%3D%3D&md5=ffd8c05c280e25a3cee73103f042b977CAS |

Nicholls, J. A., and Austin, J. J. (2005). Phylogeography of an east Australian wet-forest bird, the satin bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology. Molecular Ecology 14, 1485–1496.
Phylogeography of an east Australian wet-forest bird, the satin bowerbird (Ptilonorhynchus violaceus), derived from mtDNA, and its relationship to morphology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXktleqsLY%3D&md5=078fe7849103311f4d383633e614d82bCAS |

Osborne, M. J., Norman, J. A., Christidis, L., and Murray, N. D. (2000). Genetic distinctness of isolated populations of an endangered marsupial, the mountain pygmy-possum, Burramys parvus. Molecular Ecology 9, 609–613.
Genetic distinctness of isolated populations of an endangered marsupial, the mountain pygmy-possum, Burramys parvus.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3c3lt12msw%3D%3D&md5=7ee31a7259e28f8d328a56ce0b7c8f1bCAS |

Peakall, R., and Smouse, P. E. (2006). Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes 6, 288–295.
Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research.Crossref | GoogleScholarGoogle Scholar |

Pope, L. C., Estoup, A., and Moritz, C. (2000). Phylogeography and population structure of an ectonal marsupial, Bettongia tropica, determined from mtDNA and microsatellites. Molecular Ecology 9, 2041–2053.
Phylogeography and population structure of an ectonal marsupial, Bettongia tropica, determined from mtDNA and microsatellites.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXot1Oksg%3D%3D&md5=4fc972e870fc2948c8d8e4c521fb38a3CAS |

Posada, D. (2008). jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25, 1253–1256.
jModelTest: phylogenetic model averaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXotlKgsb4%3D&md5=a77bd0c80f24c2df3b69169b9d448dc7CAS |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959.
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=26a17cc143b35e947a0e912dc57db3e9CAS |

Raymond, M., and Rousset, F. (1995). Genepop (Version 1.2): population genetics software for exact tests and ecumenicism. The Journal of Heredity 86, 248–249.

Rice, W. (1989). Analysing tables of statistical tests. Evolution 43, 223–225.
Analysing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Schiffer, M., Kennington, W. J., Hoffmann, A. A., and Blacket, M. J. (2007). Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophila species as indicated by microsatellite markers and mitochondrial DNA. Molecular Ecology 16, 1687–1700.
Lack of genetic structure among ecologically adapted populations of an Australian rainforest Drosophila species as indicated by microsatellite markers and mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlsFWntrc%3D&md5=4b414d0197148e8d921d3ebb60878e5bCAS |

Schneider, C. J., and Moritz, C. (1999). Rainforest refugia and evolution in Australia’s Wet Tropics. Proceedings of the Royal Society of London. Series B. Biological Sciences 266, 191–196.
Rainforest refugia and evolution in Australia’s Wet Tropics.Crossref | GoogleScholarGoogle Scholar |

Schneider, C. J., Cunningham, M., and Moritz, C. (1998). Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia. Molecular Ecology 7, 487–498.
Comparative phylogeography and the history of endemic vertebrates in the Wet Tropics rainforests of Australia.Crossref | GoogleScholarGoogle Scholar |

Spencer, P. B. S., Odorico, D. M., Jones, S. J., Marsh, H. D., and Miller, D. J. (1995). Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis). Molecular Ecology 4, 523–525.
Highly variable microsatellites in isolated colonies of the rock-wallaby (Petrogale assimilis).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXosFertLk%3D&md5=159cce668539e0c3360f2634f488ddefCAS |

Spencer, P. B. S., Rhind, S. G., and Eldridge, M. D. B. (2001). Phylogeographic structure within Phascogale (Marsupialia: Dasyuridae) based on partial cytochrome b sequence. Australian Journal of Zoology 49, 369–377.
Phylogeographic structure within Phascogale (Marsupialia: Dasyuridae) based on partial cytochrome b sequence.Crossref | GoogleScholarGoogle Scholar |

Sunnucks, P., and Hales, D. F. (1996). Numerous transposed sequences of mitochondrial cytochrome oxidase I–II in aphids of the genus Sitobion (Hemiptera: Aphididae). Molecular Biology and Evolution 13, 510–524.
| 1:CAS:528:DyaK28Xht1Kgurk%3D&md5=e97cd6dde8236f5fd0fc560ee15d6b89CAS |

Sunnucks, P., Wilson, A. C., Beheregaray, L. B., Zenger, K., French, J., and Taylor, A. C. (2000). SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Molecular Ecology 9, 1699–1710.
SSCP is not so difficult: the application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXos1ymtL4%3D&md5=917a314d21a4b4f4bac9551fa8d229acCAS |

Swofford, D. L. (2000). PAUP*. Phylogenetic analysis using parsimony (*and other methods). In ‘.’ 4.0 (beta 8) edn. (Sinauer Associates Inc.: Sunderland, MA.)

Taylor, A. C., and Cooper, D. W. (1998). A set of tammar wallaby (Macropus eugenii) microsatellites tested for genetic linkage. Molecular Ecology 7, 925–926.
| 1:CAS:528:DyaK1cXlsFKlur4%3D&md5=765d6c39c0deb4537d0d5e9d88d77b68CAS |

Troughton, E. L. G. (1967). ‘Furred Animals of Australia.’ (Angus and Robertson: Sydney.)

Vähä, J., and Primmer, C. R. (2006). Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Molecular Ecology 15, 63–72.
Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci.Crossref | GoogleScholarGoogle Scholar |

Van Dyck, S., and Strahan, R. (Eds) (2008). ‘The Mammals of Australia.’ 3rd edn. (Reed New Holland: Sydney.)

Vernes, K. (1993). A drive fence for capturing small forest-dwelling macropods. Wildlife Research 20, 189–191.
A drive fence for capturing small forest-dwelling macropods.Crossref | GoogleScholarGoogle Scholar |

Vernes, K., Marsh, H., and Winter, J. (1995). Home-range characteristics amd movement patterns of the red-legged pademelon (Thylogale stigmatica) in a fragmented tropical forest. Wildlife Research 22, 699–708.
Home-range characteristics amd movement patterns of the red-legged pademelon (Thylogale stigmatica) in a fragmented tropical forest.Crossref | GoogleScholarGoogle Scholar |

Weir, B. S., and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370.
Estimating F-statistics for the analysis of population structure.Crossref | GoogleScholarGoogle Scholar |

Winter, J. W. (1997). Responses of non-volant mammals to Late Quaternary climatic changes in the Wet Tropics region of north-eastern Australia. Wildlife Research 24, 493–511.
Responses of non-volant mammals to Late Quaternary climatic changes in the Wet Tropics region of north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |