Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Evidence of recent population expansion in the field cricket Teleogryllus commodus

Kylie M. Cairns A B , Jonci N. Wolff A C , Robert C. Brooks A B and J. William O. Ballard A C D
+ Author Affiliations
- Author Affiliations

A Evolution and Ecology Research Centre, University of New South Wales, Sydney, NSW 2052, Australia.

B School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

C School of Biotechnology and Biomolecular Science, University of New South Wales, Sydney, NSW 2052, Australia.

D Corresponding author. Email: w.ballard@unsw.edu.au

Australian Journal of Zoology 58(1) 33-38 https://doi.org/10.1071/ZO09118
Submitted: 11 December 2009  Accepted: 4 February 2010   Published: 7 April 2010

Abstract

The patterns of intraspecific genetic variation can be driven by large-scale environmental events or smaller-scale phenomena such as land clearing. In Australia, European farming techniques have altered the landscape by increasing the amount of arable farmland. We hypothesised that this increase in farmland would result in a concomitant increase in the effective population size of the black field cricket (Teleogryllus commodus). To test our hypothesis, we investigated genetic variation in 1350 bp of mitochondrial mtDNA and in two nuclear encoded loci, hexokinase and elongation factor 1-α, from 20 crickets collected at Smiths Lake, New South Wales. Molecular variation in T. commodus was characterised by an over-representation of singleton mutations (negative Tajima’s D and Fu and Li’s D) in all loci studied. Further, HKA tests do not suggest that selection is acting on any one gene. Combined, these data support the hypothesis that population expansion is the force driving molecular variation in T. commodus. If an increase in agricultural habitats is the cause of population expansion in T. commodus we hypothesise greater genetic subdivision in natural than farmland habitats. An alternative possibility is that the effective geographical range of the species has increased but the density at a given site remains unchanged.

Additional keywords: European colonisation, Gryllidae, Orthoptera, population expansion, processed pseudogene.


Acknowledgements

Leigh Simmons (University of Western Australia, WA) kindly provided the specimens of T. oceanicus. Matthew Hall and Michael Kasumovic collected the T. commodus stock. We thank Elke Venstra for stock maintenance. We thank two anonymous reviewers for valuable comments. Funds were provided by an ARC Discovery Grant to Brooks and Ballard.


References

Andrés, J. A. , Maroja, L. S. , Bogdanowicz, S. M. , Swanson, W. J. , and Harrison, R. G. (2006). Molecular evolution of seminal proteins in field crickets. Molecular Biology and Evolution 23, 1574–1584.
Crossref | GoogleScholarGoogle Scholar | Maroja L. S. (2008). Barriers to gene exchange in a field cricket hybrid zone. Ph.D. Thesis, Cornell University, Ithaca, NY.

Mirol, P. M. , Routtu, J. , Hoikkala, A. , and Butlin, R. K. (2008). Signals of demographic expansion in Drosophila virilis. BMC Evolutionary Biology 8, article 59.
Crossref | GoogleScholarGoogle Scholar | Otte D. , and Alexander R. D. (1983). ‘The Australian Crickets (Orthoptera: Gryllidae).’ (Allen Press Inc.: Lawrence, KS.)

Posada, D. , and Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution 16, 37–45.
Crossref | GoogleScholarGoogle Scholar | Robinson W. H. (2005). ‘Urban Insects and Arachnids.’ (Cambridge University Press: Cambridge.)

Simon, C. , Buckley, F. , Frati, F. , Stewart, J. , and Beckenbach, A. (2006). Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 37, 545–579.
Crossref | GoogleScholarGoogle Scholar |

Snook, R. R. , Brustle, L. , and Slate, J. (2009). A test and review of the role of effective population size on experimental sexual selection patterns. Evolution 63, 1923–1933.
Crossref | GoogleScholarGoogle Scholar |

Stephens, M. , and Donnelly, P. (2003). A comparison of Bayesian methods for haplotype reconstruction from population genotype data. American Journal of Human Genetics 73, 1162–1169.
Crossref | GoogleScholarGoogle Scholar |

Stephens, M. , Smith, N. , and Donnelly, P. (2001). A new statistical method for haplotype reconstruction from population data. American Journal of Human Genetics 68, 978–989.
Crossref | GoogleScholarGoogle Scholar |

Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595.


Tishkoff, S. A. , and Verrelli, B. C. (2003). Patterns of human genetic diversity: implications for human evolutionary history and disease. Annual Review of Genomics and Human Genetics 4, 293–340.
Crossref | GoogleScholarGoogle Scholar |

True, J. R. , Mercer, J. M. , and Laurie, C. C. (1996). Differences in crossover frequency and distribution among three sibling species of Drosophila. Genetics 142, 507–523.


Zhivotovsky, L. A. , Rosenberg, N. A. , and Feldman, M. W. (2003). Features of evolution and expansion of modern humans, inferred from genomewide microsatellite markers. American Journal of Human Genetics 72, 1171–1186.
Crossref | GoogleScholarGoogle Scholar |