Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Anatomy of the nasal passages of three species of Australian bats in relation to water loss

J. E. Nelson A , K. A. Christian B D and R. V. Baudinette C
+ Author Affiliations
- Author Affiliations

A School of Biological Sciences, Monash University, Vic. 3800, Australia.

B School of Science, Charles Darwin University, Darwin, NT 0909, Australia.

C Environmental Biology, University of Adelaide, Adelaide, SA 5005, Australia.

D Corresponding author. Email: keith.christian@cdu.edu.au

Australian Journal of Zoology 55(1) 57-62 https://doi.org/10.1071/ZO06101
Submitted: 5 December 2006  Accepted: 2 January 2007   Published: 23 March 2007

Abstract

A previous study found substantial variation in rates of water loss in three species of Australian bats, with the orange leafnosed bat (Rhinonycteris aurantius) having a rate more than twice that of the large bentwing bat (Miniopterus schreibersii) and the ghost bat (Macroderma gigas). Using histological sections, we examined the nasal passages of these species to determine whether any of the species have complex turbinals that may function to reduce respiratory water loss. M. schreibersii has the most complex nasal passages, and R. aurantius has the simplest. Calculations indicate that the respiratory water loss of R. aurantius and M. schreibersii are similar, but this indicates that the nasal turbinals of M. schreibersii function to conserve pulmonary water given that the metabolic rate, and therefore respiratory frequency, is higher in M. schreibersii. R. aurantius and M. gigas echolocate by emitting pulses from the nostrils whereas M. schreibersii emits pulses from the mouth. The structure of the nasal passages of nasal emitters is constrained by the demands of echolocation, and this may preclude the development of complex turbinal arrangements required for the conservation of respiratory water.


Acknowledgements

This work was done under permits form the Northern Territory University Animal Ethics Committee and the Conservation Commission of the Northern Territory. We thank Sue Churchill and Peter Hudson for assistance in the field and in the laboratory. This paper was presented at the Russell Baudinette Memorial Symposium, 1–2 October 2005, Adelaide, Australia.


References

Baudinette, R. V. , Churchill, S. K. , Christian, K. A. , Nelson, J. E. , and Hudson, P. J. (2000). Energy, water balance and the roost microenvironment in three Australian cave-dwelling bats (Microchiroptera). Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology 170, 439–446.
Crossref | GoogleScholarGoogle Scholar | PubMed | Churchill S. K. (1998). ‘Australian Bats.’ (Reed New Holland: Sydney.)

Gunther, B. (1975). Dimensional analysis and theory of biological similarity. Physiological Reviews 55, 659–699.
PubMed |

Guppy, A. , Coles, R. B. , and Pettigrew, J. D. (1985). Echolocation and acoustic communication signals in the Australian ghost bat Macroderma gigas (Microchiroptera: Megadermatidae). Australian Mammalogy 8, 299–308.


Hillenius, W. J. (1992). The evolution of nasal turbinates and mammalian endothermy. Paleobiology 18, 17–29.


Hillenius, W. J. (1994). Turbinates in therapsids: evidence for late Permian origins of mammalian endothermy. Evolution 48, 207–229.
Crossref | GoogleScholarGoogle Scholar |

Jackson, D. C. , and Schmidt-Nielsen, K. (1964). Countercurrent heat exchange in the respiratory passages. Proceedings of the National Academy of Sciences of the United States of America 51, 1192–1197.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Korad, V. S. , and Joshi, P. V. (1998a). Studies on naso-laryngeal region in Schneider’s leaf-nosed bat Hipposideros speoris (Schneider, 1800) in relation to sound production. Part I: Anatomy. Journal of Animal Morphology and Physiology 45, 44–55.


Korad, V. S. , and Joshi, P. V. (1998b). Studies on naso-laryngeal region in Schneider’s leaf-nosed bat Hipposideros speoris (Schneider, 1800) in relation to sound production. Part II: Histology. Journal of Animal Morphology and Physiology 45, 56–65.


Kulzer, E. , Nelson, J. E. , McKean, J. L. , and Möhres, P. (1970). Untersuchungen über die Temperaturregulation australischer Fledermäuse (Microchiroptera). Zeitschrift für Vergleichende Physiologie 69, 426–451.
Crossref | GoogleScholarGoogle Scholar |

Pedersen, S. C. (1993). Cephalometric correlates of echolocation in the Chiroptera. Journal of Morphology 218, 85–98.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pedersen, S. C. (1995). Cephalometric correlates of echolocation in the Chiroptera. II. Fetal development. Journal of Morphology 225, 107–123.
Crossref | GoogleScholarGoogle Scholar |

Pedersen, S. C. (1998). Morphometric analysis of the chiropteran skull with regard to mode of echolocation. Journal of Mammalogy 79, 91–103.
Crossref | GoogleScholarGoogle Scholar |

Suthers, R. A. , Hartley, D. J. , and Wenstrup, J. J. (1988). The acoustic role of tracheal chambers and nasal cavities in the production of sonar pulses by the horseshoe bat, Rhinolophus hildebrandti. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology 162, 799–813.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Tidemann, C. R. , Priddel, D. M. , Nelson, J. E. , and Pettigrew, J. D. (1985). Foraging behaviour of the Australian ghost bat, Macroderma gigas (Microchiroptera: Megadermatidae). Australian Journal of Zoology 33, 705–713.
Crossref | GoogleScholarGoogle Scholar |

Worthington, J. , Young, I. S. , and Altringham, J. D. (1991). The relationship between body mass and ventilation rate in mammals Journal of Experimental Biology 161, 533–536.
PubMed |




* Deceased