Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Australian Journal of Zoology Australian Journal of Zoology Society
Evolutionary, molecular and comparative zoology
RESEARCH ARTICLE

Status and applications of genomic resources for the gray, short-tailed opossum, Monodelphis domestica, an American marsupial model for comparative biology

Paul B. Samollow
+ Author Affiliations
- Author Affiliations

Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA. Email: psamollow@cvm.tamu.edu

Australian Journal of Zoology 54(3) 173-196 https://doi.org/10.1071/ZO05059
Submitted: 21 September 2005  Accepted: 24 April 2006   Published: 22 June 2006

Abstract

Owing to its small size, favourable reproductive characteristics, and simple husbandry, the gray, short-tailed opossum, Monodelphis domestica, has become the most widely distributed and intensively utilised laboratory-bred research marsupial in the world today. This article provides an overview of the current state and future projections of genomic resources for this species and discusses the potential impact of this growing resource base on active research areas that use M. domestica as a model system. The resources discussed include: fully arrayed, bacterial artificial chromosome (BAC) libraries; an expanding linkage map; developing full-genome BAC-contig and chromosomal fluorescence in situ hybridisation maps; public websites providing access to the M. domestica whole-genome-shotgun sequence trace database and the whole-genome sequence assembly; and a new project underway to create an expressed-sequence database and microchip expression arrays for functional genomics applications. Major research areas discussed span a variety of genetic, evolutionary, physiologic, reproductive, developmental, and behavioural topics, including: comparative immunogenetics; genomic imprinting; reproductive biology; neurobiology; photobiology and carcinogenesis; genetics of lipoprotein metabolism; developmental and behavioural endocrinology; sexual differentiation and development; embryonic and fetal development; meiotic recombination; genome evolution; molecular evolution and phylogenetics; and more.


Acknowledgments

The author’s work is supported in part by grant RR014214 from the National Center for Research Resources of the National Institutes of Health (USA).


References

Aldred, A. R. , Prapunpoj, P. , and Schreiber, G. (1997). Evolution of shorter and more hydrophilic transthyretin N-termini by stepwise conversion of exon 2 into intron 1 sequences (shifting the 3′ splice site of intron 1). European Journal of Biochemistry 246, 401–409.
Crossref | GoogleScholarGoogle Scholar | PubMed | Cooper D. W., Johnston P. G., VandeBerg J. L., and Robinson E. S. (1990). X-chromosome inactivation in marsupials. In ‘Mammals From Pouches and Eggs: Genetics, Breeding and Evolution of Marsupials and Monotremes’. (Eds J. A. M. Graves, R. Hope and D. W. Cooper.) pp. 269–275. (CSIRO Publishing: Melbourne.)

Cooper, D. W. , Johnston, P. G. , Watson, J. M. , and Graves, J. A. M. (1993). X-inactivation in marsupials and monotremes. Seminars in Developmental Biology 4, 117–128.
Crossref | GoogleScholarGoogle Scholar | Stone W. H., Bruun D. A., Manis G. S., Holste S. B., Hoffman E. S., Spong K. D., and Walunas T. (1996). The immunobiology of the marsupial, Monodelphis domestica. In ‘Modulators of Immune Responses; The Evolutionary Trail’. (Eds J. S. Stolen, T. C. Fletcher, C. J. Bayne, C. J. Secombes, J. T. Zelikoff, L. E. Twerdok and D. P. Anderson.) pp. 149–165. (SOS Publications: Fair Haven, NJ.)

Stone, W. H. , Manis, G. S. , Hoffman, E. S. , Saphire, D. G. , Hubbard, G. B. , and VandeBerg, J. L. (1997). Fate of allogeneic skin transplantations in a marsupial, Monodelphis domestica. Laboratory Animal Science 47, 283–287.
PubMed | VandeBerg J. L. (1999). The laboratory opossum (Monodelphis domestica). In ‘UFAW Handbook on the Management of Laboratory Animals. Vol. 1: Terrestrial Vertebrates’. 7th edn. (Eds T. Poole and P. English.) pp. 193–209. (Blackwell Science: Oxford.)

VandeBerg, J. L. , and Robinson, E. S. (1997). The laboratory opossum (Monodelphis domestica) in laboratory research. ILAR Journal 38, 4–12.
PubMed |

VandeBerg, J. L. , Williams-Blangero, S. , Hubbard, G. B. , Ley, R. D. , and Robinson, E. S. (1994a). Genetic analysis of ultraviolet radiation-induced skin hyperplasia and neoplasia in a laboratory marsupial model (Monodelphis domestica). Archives of Dermatological Research 286, 12–17.
Crossref | GoogleScholarGoogle Scholar | PubMed |

VandeBerg, J. L. , Williams-Blangero, S. , Hubbard, G. B. , and Robinson, E. S. (1994b). Susceptibility to ultraviolet-induced corneal sarcomas is highly heritable in a laboratory opossum model. International Journal of Cancer 56, 119–123.


Varga, Z. M. , Bandtlow, C. E. , Erulkar, S. D. , Schwab, M. E. , and Nicholls, J. G. (1995a). The critical period for repair of CNS of neonatal opossum (Monodelphis domestica) in culture: correlation with development of glial cells, myelin and growth-inhibitory molecules. European Journal of Neuroscience 7, 2119–2129.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Varga, Z. M. , Schwab, M. E. , and Nicholls, J. G. (1995b). Myelin-associated neurite growth-inhibitory proteins and suppression of regeneration of immature mammalian spinal cord in culture. Proceedings of the National Academy of Sciences of the United States of America 92, 10 959–10 963.
Crossref | GoogleScholarGoogle Scholar |

Vernersson, M. , Aveskogh, M. , Munday, B. , and Hellman, L. (2002). Evidence for an early appearance of modern post-switch immunoglobulin isotypes in mammalian evolution (II); cloning of IgE, IgG1 and IgG2 from a monotreme, the duck-billed platypus, Ornithorhynchus anatinus. European Journal of Immunology 32, 2145–2155.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Vernersson, M. , Aveskogh, M. , and Hellman, L. (2004). Cloning of IgE from the echidna (Tachyglossus aculeatus) and a comparative analysis of ϵ chains from all three extant mammalian lineages. Developmental and Comparative Immunology 28, 61–75.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Voss, R. S. , and Jansa, S. A. (2003). Phylogenetic studies on didelphid marsupials. II. Nonmolecular data and new IRBP sequences: separate and combined analyses of didelphine relationships with denser taxon sampling. Bulletin of the American Museum of Natural History 276, 1–82.
Crossref | GoogleScholarGoogle Scholar |

Wang, Z. , and VandeBerg, J. L. (2003). Loss of melanogenic response to DNA damage correlates with the metastatic phenotype of a melanoma cell line from Monodelphis domestica. Melanoma Research 13, 111–112.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, Z. , and VandeBerg, J. L. (2004). Cloning and molecular characterization of a human ortholog of Monodelphis TRAPD in ultraviolet B-induced melanoma. Melanoma Research 14, 107–114.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, Z. , Atencio, J. , Robinson, E. S. , and McCarrey, J. R. (2001). Ultraviolet B-induced melanoma in Monodelphis domestica occurs in the absence of alterations in the structure or expression of the p53 gene. Melanoma Research 11, 239–245.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wang, Z. , Hubbard, G. B. , Pathak, S. , and VandeBerg, J. L. (2003). In vivo opossum xenograft model for cancer research. Cancer Research 63, 6121–6124.
PubMed |

Weidman, J. R. , Murphy, S. K. , Nolan, C. M. , Dietrich, F. S. , and Jirtle, R. L. (2004). Phylogenetic footprint analysis of IGF2 in extant mammals. Genome Research 14, 1726–1732.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Weidman, J. R. , Maloney, K. A. , and Jirtle, R. L. (2006). Comparative phylogenetic analysis reveals multiple non-imprinted isoforms of opossum Dlk1. Mammalian Genome 17, 157–167.
Crossref | GoogleScholarGoogle Scholar | PubMed |

West Greenlee, M. H. , Finley, S. K. , Wilson, M. C. , Jacobson, C. D. , and Sakaguchi, D. S. (1998). Transient, high levels of SNAP-25 expression in cholinergic amacrine cells during postnatal development of the mammalian retina. Journal of Comparative Neurology 394, 374–385.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Wintzer, M. , Mladinic, M. , Lazarevic, D. , Casseler, C. , Cattaneo, A. , and Nicholls, J. (2004). Strategies for identifying genes that play a role in spinal cord regeneration. Journal of Anatomy 204, 3–11.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Woodburne, M. O. , Rich, T. H. , and Springer, M. S. (2003). The evolution of tribospheny and the antiquity of mammalian clades. Molecular Phylogenetics and Evolution 28, 360–385.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zeller, U. , and Freyer, C. (2001). Early ontogeny and placentation of the grey short-tailed opossum, Monodelphis domestica (Didelphidae: Marsupialia): contribution to the reconstruction of the marsupial morphotype. Journal of Zoological Systematics and Evolutionary Research 39, 137–158.
Crossref | GoogleScholarGoogle Scholar |

Zenger, K. R. , McKenzie, L. M. , and Cooper, D. W. (2002). The first comprehensive genetic linkage map of a marsupial: the tammar wallaby (Macropus eugenii). Genetics 162, 321–330.
PubMed |

Zhao, S. , Shetty, J. , Hou, L. , Delcher, A. , and Zhu, B. , et al. (2004). Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. Genome Research 14, 1851–1860.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zimek, A. , and Weber, K. (2006). The organization of the keratin I and II gene clusters in placental mammals and marsupials show a striking similarity. European Journal of Cell Biology 85, 83–89.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zuri, I. , and Halpern, M. (2005). Modification of odor investigation and discrimination in female opossums (Monodelphis domestica) following the ablation of the accessory olfactory bulbs. Behavioral Neuroscience 119, 612–621.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Zuri, I. , Su, W. , and Halpern, M. (2003). Conspecific odor investigation by gray short-tailed opossums (Monodelphis domestica). Physiology & Behavior 80, 225–232.
Crossref | GoogleScholarGoogle Scholar | PubMed |