Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Conservation issues using discordant taxonomic and evolutionary units: a case study of the American manatee (Trichechus manatus, Sirenia)

Camilla S. Lima https://orcid.org/0000-0003-4783-2851 A , Rafael F. Magalhães https://orcid.org/0000-0002-2059-1288 B and Fabricio R. Santos https://orcid.org/0000-0001-9088-1750 C D
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graduação em Genética, Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CP 486, 31270-010 Belo Horizonte, MG, Brazil.

B Departamento de Ciências Naturais, Campus Dom Bosco, Universidade Federal de São João del-Rei, Pç. Dom Helvécio 74, 36301-160 São João del-Rei, MG, Brazil.

C Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, CP 486, 31270-010 Belo Horizonte, MG, Brazil.

D Corresponding author. Email: fsantos@icb.ufmg.br

Wildlife Research 48(5) 385-392 https://doi.org/10.1071/WR20197
Submitted: 19 November 2020  Accepted: 20 January 2021   Published: 9 April 2021

Abstract

The delimitation of evolutionarily significant units (ESUs) frequently results in controversy, but prioritising populations with evolutionary independence is essential for effective in situ conservation management. The American manatee (Trichechus manatus) is distributed along subtropical and tropical coastal waters from Florida (USA) to Alagoas (Brazil), and two subspecies are traditionally recognised, namely, T. m. latirostris, restricted to the Florida peninsula, and T. m. manatus, found in the remaining areas. However, this subspecific classification is not supported by genetic and morphologic evidence, which, rather, recognises two deeply differentiated populations or ESUs called Atlantic (Brazil) and Caribbean (from Venezuela to Florida). In this viewpoint paper, we compare both intraspecific divisions of T. manatus and the conservation implications. First, we used all available mtDNA evidence to test the genealogical clustering of the two American manatee ESUs by using a tree-based coalescent method. Second, we have used different models under a coalescent framework to estimate the historic gene flow among manatee populations. The analysis of the spatial distribution of mtDNA clusters confirmed the existence of the two suggested ESUs, rather than the two claimed subspecies. Furthermore, the best model to explain historic migration indicates that Brazilian manatees belong to an isolated population, whereas Florida and Caribbean populations are connected by more recent gene flow. These results have confirmed that T. manatus of the Caribbean, Gulf of Mexico and Florida belong to the same deme or Caribbean ESU, and the relatively isolated population inhabiting the Atlantic coast of Brazil belongs to the Atlantic ESU. Furthermore, both ESUs are separated by an interspecific hybrid zone (with the Amazonian manatee) located around the mouth of the Amazon River towards the Guianas coastline. The subdivision of two ESUs is also highly supported by karyotypic, morphological and ecological data, and is in clear disagreement with the traditional subspecies designations and the IUCN priorities, which manages Brazilian manatees as part of the Antillean manatee subspecies (T. m. manatus). Rather, Brazilian manatees should be considered as a full priority for conservation and require further taxonomic research; because of their deep history of isolation, they present high genetic and morphologic differentiation from all other American manatees.

Keywords: conservation genetics, evolutionary significant units, Trichechus manatus, subspecies.


References

Alvarez-Alemán, A. A., Austin, J. D., Jacoby, C. A., and Frazer, T. K. (2018). Cuban connection: regional role for Florida’s manatees. Frontiers in Marine Science 5, 294.
Cuban connection: regional role for Florida’s manatees.Crossref | GoogleScholarGoogle Scholar |

Alves, M. D., Kinas, P. G., Marmontel, M., Borges, J. C. G., Costa, A. F., Schiel, N., and Araújo, M. E. (2016). First abundance estimate of the Antillean manatee (Trichechus manatus manatus) in Brazil by aerial survey. Marine Mammals 96, 955–966.
First abundance estimate of the Antillean manatee (Trichechus manatus manatus) in Brazil by aerial survey.Crossref | GoogleScholarGoogle Scholar |

Avise, J. C. (2009). Phylogeography: retrospect and prospect. Journal of Biogeography 36, 3–15.
Phylogeography: retrospect and prospect.Crossref | GoogleScholarGoogle Scholar |

Barros, H. M., Meirelles, A. C., Luna, F. O., Marmontel, M., Cordeiro-Estrela, P., Santos, N., and Astúa, D. (2017). Cranial and chromosomal geographic variation in manatees (Mammalia: Sirenia: Trichechidae) with the description of the Antillean manatee karyotype in Brazil. Journal of Zoological Systematics and Evolutionary Research 55, 73–87.
Cranial and chromosomal geographic variation in manatees (Mammalia: Sirenia: Trichechidae) with the description of the Antillean manatee karyotype in Brazil.Crossref | GoogleScholarGoogle Scholar |

Brito, H., and Edwards, S. V. (2009). Multilocus phylogeography and phylogenetics using sequence-based markers. Genetica 135, 439–455.
Multilocus phylogeography and phylogenetics using sequence-based markers.Crossref | GoogleScholarGoogle Scholar |

Britt, M., Haworth, S. E., Johnson, J. B., Martchenko, D., and Shafer, A. B. A. (2018). The importance of non-academic coauthors in bridging the conservation genetics gap. Biological Conservation 218, 118–123.
The importance of non-academic coauthors in bridging the conservation genetics gap.Crossref | GoogleScholarGoogle Scholar |

Ciotti, L. L. (2012). Isótopos Estáveis de Carbono e Nitrogênio Aplicados ao Estudo da Ecologia Trófica do Peixe-boi Marinho (Trichechus manatus) no Brasil. Master’s thesis, Universidade Federal do Rio Grande, Brazil.

Cook, C. N., and Sgrò, C. M. (2017). Aligning science and policy to achieve evolutionarily enlightened conservation. Conservation Biology 31, 501–512.
Aligning science and policy to achieve evolutionarily enlightened conservation.Crossref | GoogleScholarGoogle Scholar | 27862324PubMed |

Crandall, K. A., Bininda-Emonds, O. R. P., Mace, G. M., and Wayne, R. K. (2000). Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15, 290–295.
Considering evolutionary processes in conservation biology.Crossref | GoogleScholarGoogle Scholar |

Deutsch, C., Self-Sullivan, C., and Mignucci-Giannoni, A. (2008). Trichechus manatus. The IUCN Red List of Threatened Species 2008: e.T22103A9356917. Available at https://www.iucnredlist.org/species/22103/9356917 [verified 23 March 2019].

Domning, D. P., and Hayek, L.-A. C. (1986). Interspecific and intraspecific morphological variation in manatees (Sirenia: Trichechus). Marine Mammal Science 2, 87–144.
Interspecific and intraspecific morphological variation in manatees (Sirenia: Trichechus).Crossref | GoogleScholarGoogle Scholar |

Frankham, R., Ballou, J. D., Eldridge, M. D., Lacy, R. C., Ralls, K., Dudash, M. R., and Fenster, C. B. (2011). Predicting the probability of outbreeding depression. Conservation Biology 25, 465–475.
Predicting the probability of outbreeding depression.Crossref | GoogleScholarGoogle Scholar | 21486369PubMed |

Fraser, D. J., and Bernatchez, L. (2001). Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology 10, 2741–2752.
Adaptive evolutionary conservation: towards a unified concept for defining conservation units.Crossref | GoogleScholarGoogle Scholar | 11903888PubMed |

Garcia-Rodriguez, A. I., Bowen, B. W., Domning, D. P., Mignucci-Giannoni, A. A., Marmontel, M., Montoya-Ospina, R. A., Morales-Vela, B., Rudin, M., Bonde, R. K., and McGuire, P. M. (1998). Phylogeography of the West Indian manatee (Trichechus manatus): how many populations and how many taxa? Molecular Ecology 7, 1137–1149.
Phylogeography of the West Indian manatee (Trichechus manatus): how many populations and how many taxa?Crossref | GoogleScholarGoogle Scholar | 9734072PubMed |

Gippoliti, S., and Amori, G. (2007). The problem of subspecies and biased taxonomy in conservation lists: the case of mammals. Folia Zoologica 56, 113–117.

Hatt, R. T. (1934). A manatee collected by the American Museum Congo Expedition, with observations on the recent manatees. Bulletin of the American Museum of Natural History 66, 533–566.

Hedrick, P. W., and Garcia-Dorado, A. (2016). Understanding inbreeding depression, purging, and genetic rescue. Trends in Ecology & Evolution 31, 940–952.
Understanding inbreeding depression, purging, and genetic rescue.Crossref | GoogleScholarGoogle Scholar |

Hogg, C. J., Grueber, C. E., Pemberton, D., Fox, S., Lee, A. V., Ivy, J. A., and Belov, K. (2017). ‘Devil Tools & Tech’: a synergy of conservation research and management practice. Conservation Letters 10, 133–138.
‘Devil Tools & Tech’: a synergy of conservation research and management practice.Crossref | GoogleScholarGoogle Scholar |

Hostetler, J. A., Edwards, H. H., Martin, J., and Schueller, P. (2018). Updated statewide abundance estimates for the Florida manatee. Technical Report No. 23. Florida Fish and Wildlife Conservation Commission, Fish and Wildlife Research Institute, St. Petersburg, FL, USA.

Hunter, M. E., Auil-Gomez, N. E., Tucker, K. P., Bonde, R. K., Powell, J., and McGuire, P. M. (2010). Low genetic variation and evidence of limited dispersal in the regionally important Belize manatee. Animal Conservation 13, 592–602.
Low genetic variation and evidence of limited dispersal in the regionally important Belize manatee.Crossref | GoogleScholarGoogle Scholar |

Hunter, M. E., Mignucci-Giannoni, A. A., Tucker, K. P., King, T. L., Bonde, R. K., Gray, B. a., and McGuire, P. M. (2012). Puerto Rico and Florida manatees represent genetically distinct groups. Conservation Genetics 13, 1623–1635.
Puerto Rico and Florida manatees represent genetically distinct groups.Crossref | GoogleScholarGoogle Scholar |

ICMBio (2012). ‘Procedimentos para a Elaboração, Aprovação, Publicação, Implementação, Monitoria, Avaliação e Revisão de Planos de Ação Nacionais para Conservação de Espécies Ameaçadas de Extinção ou do Patrimônio Espeleológico.’ (Diário Oficial da União: Brasil.)

IUCN (2019). ‘Guidelines for Using the IUCN Red List Categories and Criteria. Version 14.’ Standards and Petitions Committee. Available at http://www.iucnredlist.org/documents/RedListGuidelines.pdf [verified 3 January 2021].

IUCN (2020). The IUCN Red List of Threatened Species. Version 2020-2. Available at http://www.iucnredlist.org [verified 3 January 2021].

Joly, E. (2010). The existence of species rests on a metastable equilibrium between inbreeding and outbreeding. An essay on the close relationship between speciation, inbreeding and recessive mutations. Biology Direct 6, 1–55.
The existence of species rests on a metastable equilibrium between inbreeding and outbreeding. An essay on the close relationship between speciation, inbreeding and recessive mutations.Crossref | GoogleScholarGoogle Scholar |

Lima, C. S., Magalhães, R. F., Marmontel, M., Meirelles, A. C., Carvalho, V. L., Lavergne, A., De Thoisy, B., and Santos, F. R. (2019). A hybrid swarm of manatees along the Guianas coastline, a peculiar environment under the influence of the Amazon River plume. Annals of the Brazilian Academy of Sciences 91, e20190325.
A hybrid swarm of manatees along the Guianas coastline, a peculiar environment under the influence of the Amazon River plume.Crossref | GoogleScholarGoogle Scholar |

Luna, F. O., Bonde, R. K., Attademo, F. L., Saunders, J. W., Meigs-Friend, G., Passavante, J. Z., and Hunter, M. E. (2012). Phylogeographic implications for release of critically endangered manatee calves rescued in northeast Brazil. Aquatic Conservation 22, 665–672.
Phylogeographic implications for release of critically endangered manatee calves rescued in northeast Brazil.Crossref | GoogleScholarGoogle Scholar |

Marshall, T. C., and Spalton, J. A. (2000). Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx. Animal Conservation 3, 241–248.
Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx.Crossref | GoogleScholarGoogle Scholar |

Mayr, E. (1982). Of what use are subspecies? The Auk 99, 593–595.
Of what use are subspecies?Crossref | GoogleScholarGoogle Scholar |

Meirelles, A. C., Marmontel, M., and Mobley, R. S. (2016). Biology. In ‘West Indian Manatee: Biology and Conservation in Brazil’. (Eds A. C. Meirelles and V. L. Carvalho.) pp. 29–50. (Bambu Editora e Artes Gráficas: São Paulo, Brazil.)

Meirelles, A. C., de Carvalho, V. L., and Marmontel, M. (2018). West Indian manatee Trichechus manatus in South America: distribution, ecology and health assessment. In ‘Advances in Marine Vertebrate Research in Latin America. Coastal Research Library’. (Eds M. Rossi-Santos and C. Finkl.) pp. 263–291. (Springer: Cham, Switzerland.)10.1007/978-3-319-56985-7

Mello, B., Vilela, J. F., and Schrago, C. G. (2018). Conservation phylogenetics and computational species delimitation of Neotropical primates. Biological Conservation 217, 397–406.
Conservation phylogenetics and computational species delimitation of Neotropical primates.Crossref | GoogleScholarGoogle Scholar |

Moritz, C. (1994). Defining ‘Evolutionarily Significant Units’ for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining ‘Evolutionarily Significant Units’ for conservation.Crossref | GoogleScholarGoogle Scholar |

Moritz, C. (1999). Conservation units and translocations: strategies for conserving evolutionary processes. Hereditas 130, 217–228.
Conservation units and translocations: strategies for conserving evolutionary processes.Crossref | GoogleScholarGoogle Scholar |

Normande, I. C., Luna, F. O., Mendes Malhado, A. C., Gomes Borges, J. C., Viana, P. C., Niemeyer Attademo, F. L., and Ladle, R. J. (2015). Eighteen years of Antillean manatee Trichechus manatus manatus releases in Brazil: lessons learnt. Oryx 49, 338–344.
Eighteen years of Antillean manatee Trichechus manatus manatus releases in Brazil: lessons learnt.Crossref | GoogleScholarGoogle Scholar |

Nourisson, C., Morales-Vela, B., Padilla-Saldívar, J., Tucker, K. P., Clark, A., Olivera-Gómez, L. D., Bonde, R., and McGuire, P. (2011). Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation. Genetica 139, 833–842.
Evidence of two genetic clusters of manatees with low genetic diversity in Mexico and implications for their conservation.Crossref | GoogleScholarGoogle Scholar | 21681472PubMed |

Ortega-Argueta, A., and Castelblanco-Martínez, D. N. (2018). Is captive breeding a priority for manatee conservation in Mexico? Oryx 54, 110–117.
Is captive breeding a priority for manatee conservation in Mexico?Crossref | GoogleScholarGoogle Scholar |

Parr, L., Santos, F. R., Waycott, M., Vianna, J. A., Mcdonald, B., Caballero, S., and Lopes, M. J. de S. (2012). Sirenian genetics and demography. In ‘Sirenian Conservation’. (Eds E. M. Hines, J. E. Reynolds III, L. V Aragones, A. A. Mignucci-Giannoni, and M. Marmontel.) pp. 168–179. (University Press of Florida.)

Peltier, W. R., and Fairbanks, R. G. (2006). Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record. Quaternary Science Reviews 25, 3322–3337.
Global glacial ice volume and Last Glacial Maximum duration from an extended Barbados sea level record.Crossref | GoogleScholarGoogle Scholar |

Phillimore, A. B., and Owens, I. P. (2006). Are subspecies useful in evolutionary and conservation biology? Proceedings. Biological Sciences 273, 1049–1053.
Are subspecies useful in evolutionary and conservation biology?Crossref | GoogleScholarGoogle Scholar | 16600880PubMed |

Pressey, R. L., Weeks, R., and Gurney, G. G. (2017). From displacement activities to evidence-informed decisions in conservation. Biological Conservation 212, 337–348.
From displacement activities to evidence-informed decisions in conservation.Crossref | GoogleScholarGoogle Scholar |

Quintana-Rizzo, E., and Reynolds, J., III (2010). UNEP: Regional Management Plan for the West Indian Manatee (Trichechus manatus). CEP Technical Report No. 48. Kingston, Jamaica.

Ralls, K., Ballou, J. D., Dudash, M. R., Eldridge, M. D. B., Fenster, C. B., Lacy, R. C., Sunnucks, P., and Frankham, R. (2018). Call for a paradigm shift in the genetic management of fragmented populations. Conservation Letters 11, e12412.
Call for a paradigm shift in the genetic management of fragmented populations.Crossref | GoogleScholarGoogle Scholar |

Reynolds, J., and Wetzel, D. (2008). Reintroduction of Manatees Trichechus manatus into Guadeloupe, Lesser Antilles: Issues, Questions and Possible Answers. Mote Marine Laboratory, Sarasota, FL, USA.

Ryder, O. A. (1986). Species conservation and systematics: the dilemma of subspecies. Trends in Ecology & Evolution 1, 9–10.
Species conservation and systematics: the dilemma of subspecies.Crossref | GoogleScholarGoogle Scholar |

Santos, F. R., Barros, H. M., Schetino, M. A. A., and de Lima, C. S. (2016). Genetics. In ‘West Indian Manatee: Biology and Conservation in Brazil’. (Eds A. C. Meirelles and V. L. Carvalho.) pp. 63–75. (Bambu Editora e Artes Gráficas: São Paulo, Brazil.)

Shafer, A. B., Wolf, J. B., Alves, P. C., Bergströ, L., Bruford, M. W., Brännströ, I., Colling, G., Dalé, L., De Meester, L., Ekblom, R., Fawcett, K. D., Fior, S., Hajibabaei, M., Hill, J. A., Rus Hoezel, A., Höglund, J., Jensen, E. L., Krause, J, Kristensen, T. N., Krützen, M., McKay, J. K., Norman, A. J., Roumet, M., Salmona, J., Schenekar, T., Schwartz, M. K., Segelbacher, G., Senn, H., Thaulow, J., Valtonen, M., Veale, A., Vergeer, P., Vijay, N., Vilà, C., Weissensteiner, M., Wennerströ, L., Wheat, C. W., and Zieliski, P. (2015). Genomics and the challenging translation into conservation practice. Trends in Ecology & Evolution 30, 78–87.
Genomics and the challenging translation into conservation practice.Crossref | GoogleScholarGoogle Scholar |

Taylor, H. R., Dussex, N., and van Heezik, Y. (2017). Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners. Global Ecology and Conservation 10, 231–242.
Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners.Crossref | GoogleScholarGoogle Scholar |

Vianna, J. A., Bonde, R. K., Caballero, S., Giraldo, J. P., Lima, R. P., Clark, A., Marmontel, M., Morales-Vela, B., De Souza, M. J., Parr, L., Rodríguez-Lopez, M. A., Mignucci-Giannoni, A. A., Powell, J. A., and Santos, F. R. (2006). Phylogeography, phylogeny and hybridization in trichechid sirenians: implications for manatee conservation. Molecular Ecology 15, 433–447.
Phylogeography, phylogeny and hybridization in trichechid sirenians: implications for manatee conservation.Crossref | GoogleScholarGoogle Scholar | 16448411PubMed |

Vilaça, S. T., Lima, C. S., Manzonni, C. J., Santos, F. R., and Thoisy, B. (2019). Manatee genomics supports a special conservation area in the Guianas coastline under the influence of the Amazon River plume. Estuarine, Coastal and Shelf Science 226, 106286.
Manatee genomics supports a special conservation area in the Guianas coastline under the influence of the Amazon River plume.Crossref | GoogleScholarGoogle Scholar |