Modelling the abundance and productivity distribution to understand the habitat–species relationship: the guanaco (Lama guanicoe) case study
Celina E. Flores A E , Laura M. Bellis B C and Schiavini Adrián A C DA Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, Ushuaia, V9410, Tierra del Fuego, Argentina.
B Instituto de Altos Estudios Espaciales ‘Mario Gulich’ (CONAE-UNC), CONICET, Falda del Cañete, Ruta Provincial C45, CPA X5187XAC, Falda del Carmen, Córdoba, Argentina.
C Cátedra de Ecología de la Facultad de Ciencias Exactas Físicas y Naturales de la Universidad Nacional de Córdoba, Av. Velez Sarsfield 299, X5000 JJC, Córdoba, Argentina.
D Universidad Nacional de Tierra del Fuego Antártida e Islas del Atlántico Sur. Instituto de Ciencias Polares, Ambiente y Recursos Naturales. Fuegia Basket 251, Ushuaia, Tierra del Fuego, Argentina.
E Wildlife Conservation Society, Representación Argentina.
F Corresponding author. Email: celiflores1@gmail.com
Wildlife Research 47(6) 448-459 https://doi.org/10.1071/WR19114
Submitted: 6 July 2019 Accepted: 13 April 2020 Published: 14 August 2020
Abstract
Context: The conservation of large wild herbivores presents a challenge posed by the fact that their broad habitat requirements overlap with various human activities. Elucidating the factors that explain their distribution patterns provides us with a better understanding of habitat–species relationships and facilitates the design of effective management policies.
Aims: Identify the natural (forage availability, weather) and anthropogenic (hunting, interspecific competition) factors that explain the abundance and productivity distribution of the guanaco. Estimate guanaco abundance and productivity and describe their distribution.
Methods: We estimated the abundance and productivity of guanaco by using aerial surveys during the breeding and non-breeding season of two consecutive years, following the strip-transect methodology; we then modelled these as a function of environmental factors by means of density surface models.
Key results: The highest abundance and productivity of guanaco occurred mostly where mesic grassland was dominant. Guanaco abundance presented three hotspots on the basis of geographic location, and family groups were more productive at low to intermediate livestock level. Abundance was significantly higher in the breeding season for both years (5614 and 14 092 individuals) than in the non-breeding season (2922 and 6926 individuals), and it was higher in 2015 than in 2014. Productivity was higher in 2015 than in 2014 (0.54 and 0.46 calves per adult respectively).
Conclusions: Guanaco responded to forage availability, occupying zones with low to intermediate food availability in the breeding season, and those with the highest availability in the non-breeding season. This could be due to interspecific competition between livestock and guanaco family groups. We propose that the overall guanaco response could also be explained by social structure or by unassessed factors such as predation risk by feral dogs.
Implications: The guanaco could compensate for the use of habitats with a lower food availability during the breeding season by using better-quality habitats during the non-breeding season.
Additional keywords: environmental heterogeneity, density surface modelling, population distribution.
References
Acebes, P., Malo, J. E., and Traba, J. (2013). Trade-offs between food availability and predation risk in desert environments: the case of polygynous monomorphic guanaco (Lama guanicoe). Journal of Arid Environments 97, 136–142.| Trade-offs between food availability and predation risk in desert environments: the case of polygynous monomorphic guanaco (Lama guanicoe).Crossref | GoogleScholarGoogle Scholar |
Anchorena, J., Cingolani, A., Livraghi, E., Collantes, M., and Stoffella, S. (2001). ‘Manejo del Pastoreo de Ovejas en Tierra del Fuego.’ (Edipubli Sociedad Anónima: Buenos Aires, Argentina.) [In Spanish.]
Baldi, R., Albon, S., and Elston, D. (2001). Guanacos and sheep: evidence for continuing competition in arid Patagonia. Oecologia 129, 561–570.
| Guanacos and sheep: evidence for continuing competition in arid Patagonia.Crossref | GoogleScholarGoogle Scholar | 24577696PubMed |
Baldi, R., Novaro, A., Funes, M., Walker, S., Ferrando, P., Failla, M., and Carmanchahi, P. (2010). Guanaco management in Patagonian rangelands: a conservation opportunity on the brink of collapse. In ‘Wild Rangelands: Conserving Wildlife While Maintaining Livestock in Semi-Arid Ecosystems’. (Eds J. T. du Toit, R. Kock, and J. C. Deutsch.) pp. 266–290. (Blackwell Publishing Ltd: Chichester, UK)
Baldi, R., Acebes, P., Cuéllar, E., Funes, M., Hoces, D., Puig, S., and Franklin, W. (2016). Lama guanicoe, guanaco. The IUCN RedList of Threatened Species 2016: e. T11186A18540211.
Bank, M. S., Sarno, R. J., and Franklin, W. L. (2003). Spatial distribution of guanaco mating sites in southern Chile: conservation implications. Biological Conservation 112, 427–434.
| Spatial distribution of guanaco mating sites in southern Chile: conservation implications.Crossref | GoogleScholarGoogle Scholar |
Berggren, Å., Björkman, C., Bylund, H., and Ayres, M. P. (2009). The distribution and abundance of animal populations in a climate of uncertainty. Oikos 118, 1121–1126.
| The distribution and abundance of animal populations in a climate of uncertainty.Crossref | GoogleScholarGoogle Scholar |
Bjørneraas, K., Solberg, E. J., Herfindal, I., Moorter, B. V., Rolandsen, C. M., Tremblay, J.-P., Skarpe, C., Sæther, B.-E., Eriksen, R., and Astrup, R. (2011). Moose Alces alces habitat use at multiple temporal scales in a human-altered landscape. Wildlife Biology 17, 44–54.
| Moose Alces alces habitat use at multiple temporal scales in a human-altered landscape.Crossref | GoogleScholarGoogle Scholar |
Bonino, N., and Fernandez, E. (1994). Distribución general y abundancia relativa de guanacos (Lama guanicoe) en diferentes ambientes de Tierra del Fuego, Argentina. Ecología Austral 4, 79–85.
Bowyer, R. T., and Kie, J. G. (2006). Effects of scale on interpreting life‐history characteristics of ungulates and carnivores. Diversity & Distributions 12, 244–257.
| Effects of scale on interpreting life‐history characteristics of ungulates and carnivores.Crossref | GoogleScholarGoogle Scholar |
Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling Estimating Abundance of Biological Populations.’ (Oxford University Press: Oxford, UK.)
Burgi, M. V., Marino, A., Rodríguez, M. V., Pazos, G., and Baldi, R. (2012). Response of guanacos Lama guanicoe to changes in land management in Península Valdés, Argentine Patagonia: conservation implications. Oryx 46, 99–105.
| Response of guanacos Lama guanicoe to changes in land management in Península Valdés, Argentine Patagonia: conservation implications.Crossref | GoogleScholarGoogle Scholar |
Castillo, A. G., Alo, D., González, B. A., and Samaniego, H. (2018). Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile. PeerJ 6, e4907.
| Change of niche in guanaco (Lama guanicoe): the effects of climate change on habitat suitability and lineage conservatism in Chile.Crossref | GoogleScholarGoogle Scholar | 29868293PubMed |
Chirichella, R., Apollonio, M., and Putman, R. J. (2014). Competition between domestic and wild ungulates. In ‘Behaviour and Management of European Ungulates’. (Eds R. Putman, and M. Apollonio.) pp. 110–123. (Whittles Publishing: Caithness, UK).
Cingolani, A. M., Anchorena, J., and Collantes, M. B. (1998). Landscape heterogeneity and long-term animal production in Tierra del Fuego. Journal of Range Management 51, 79–87.
| Landscape heterogeneity and long-term animal production in Tierra del Fuego.Crossref | GoogleScholarGoogle Scholar |
Collado, L., and Farina, S. (2006). El bosque de Tierra del Fuego. Caracterización, regions ecológicas, actividad forestal, problemáticas y desafíos actuales. (Subsecretaria de Recursos Naturales, Dirección de Bosques: Ushuaia, Tierra del Fuego, Argentina.)
Couturier, S., Côté, S. D., Otto, R. D., Weladji, R. B., and Huot, J. (2009). Variation in calf body mass in migratory caribou: the role of habitat, climate, and movements. Journal of Mammalogy 90, 442–452.
| Variation in calf body mass in migratory caribou: the role of habitat, climate, and movements.Crossref | GoogleScholarGoogle Scholar |
Darmon, G., Calenge, C., Loison, A., Jullien, J.-M., Maillard, D., and Lopez, J.-F. (2012). Spatial distribution and habitat selection in coexisting species of mountain ungulates. Ecography 35, 44–53.
| Spatial distribution and habitat selection in coexisting species of mountain ungulates.Crossref | GoogleScholarGoogle Scholar |
Dellabianca, N. A., Pierce, G. J., Raya Rey, A., Scioscia, G., Miller, D. L., Torres, M. A., Paso Viola, M. N., Goodall, R. N. P., and Schiavini, A. C. M. (2016). Spatial models of abundance and habitat preferences of Commerson’s and Peale’s Dolphin in Southern PatagonianWaters. PLoS One 11, e0163441.
| Spatial models of abundance and habitat preferences of Commerson’s and Peale’s Dolphin in Southern PatagonianWaters.Crossref | GoogleScholarGoogle Scholar | 27783627PubMed |
Flores, C. E. (2018). Factores que definen la distribución de abundancia y fecundidad del guanaco (Lama guanicoe) al este del ecotono de Tierra del Fuego. Tesis Doctoral. Universidad Nacional de Córdoba, Argentina.
Flores, C. E., Cingolani, A. M., von Müller, A., and Barri, F. R. (2012). Habitat selection by reintroduced guanacos (Lama guanicoe) in a heterogeneous mountain rangeland of central Argentina. The Rangeland Journal 34, 439–445.
| Habitat selection by reintroduced guanacos (Lama guanicoe) in a heterogeneous mountain rangeland of central Argentina.Crossref | GoogleScholarGoogle Scholar |
Flores, C. E., Deferrari, G., Collado, L., Escobar, J., and Schiavini, A. (2018). Spatial abundance models and seasonal distribution for guanaco (Lama guanicoe) in central Tierra del Fuego, Argentina. PLoS One 13, e0197814.
| Spatial abundance models and seasonal distribution for guanaco (Lama guanicoe) in central Tierra del Fuego, Argentina.Crossref | GoogleScholarGoogle Scholar | 29782523PubMed |
Fortin, D., Beyer, H. L., Boyce, M. S., Smith, D. W., Duchesne, T., and Mao, J. S. (2005). Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park. Ecology 86, 1320–1330.
| Wolves influence elk movements: behavior shapes a trophic cascade in Yellowstone National Park.Crossref | GoogleScholarGoogle Scholar |
Franklin, W. L. (1983). Contrasting socioecologies of South America’s wild camelids: the vicuña and the guanaco. In ‘Advances in the Study of Mammalian Behavior, American Society of Mammalogists, Special Publication 7’. (Eds J. F. Eisenberg, and D. G. Kleiman.) pp. 573–629. (Allen Press: Lawrence, KS, USA.)
Franklin, W. L., Fernando Bas, M., Bonacic, C. F., Cunazza, C., and Soto, N. (1997). Striving to manage Patagonia guanacos. Wildlife Society Bulletin 25, 65–73.
Fretwell, S. D., and Calver, J. S. (1969). On territorial behavior and other factors influencing habitat distribution in birds. Acta Biotheoretica 19, 37–44.
| On territorial behavior and other factors influencing habitat distribution in birds.Crossref | GoogleScholarGoogle Scholar |
Gaillard, J.-M., Festa-Bianchet, M., and Yoccoz, N. G. (1998). Population dynamics of large herbivores: variable recruitment with constant adult survival. Trends in Ecology & Evolution 13, 58–63.
| Population dynamics of large herbivores: variable recruitment with constant adult survival.Crossref | GoogleScholarGoogle Scholar |
Gregorio, P. F., Panebianco, A., Ovejero Aguilar, R., Taraborelli, P. A., Moreno, P. G., Schroeder, N., Leggieri, L. R., Marozzi, A. A., and Carmanchahi, P. D. (2019). Linking diet quality and energy demand in free‐living guanacos: an eco‐physiological innovative approach. Journal of Zoology 308, 243–252.
| Linking diet quality and energy demand in free‐living guanacos: an eco‐physiological innovative approach.Crossref | GoogleScholarGoogle Scholar |
Guangshun, J., Jianzhang, M., and Minghai, Z. (2006). Spatial distribution of ungulate responses to habitat factors in Wandashan Forest Region, northeastern China. The Journal of Wildlife Management 70, 1470–1476.
| Spatial distribution of ungulate responses to habitat factors in Wandashan Forest Region, northeastern China.Crossref | GoogleScholarGoogle Scholar |
Gustine, D. D., Parker, K. L., Lay, R. J., Gillingham, M. P., and Heard, D. C. (2006). Calf survival of woodland caribou in a multi‐predator ecosystem. Wildlife Monographs 165, 1–32.
| Calf survival of woodland caribou in a multi‐predator ecosystem.Crossref | GoogleScholarGoogle Scholar |
Hebblewhite, M., Merrill, E., and McDermid, G. (2008). A multi‐scale test of the forage maturation hypothesis in a partially migratory ungulate population. Ecological Monographs 78, 141–166.
Howe, M., Okello, M. M., and Davis, J. M. (2013). Interspecific variation in the distribution of ungulates relative to human infrastructure surrounding Amboseli National Park. African Zoology 48, 159–166.
| Interspecific variation in the distribution of ungulates relative to human infrastructure surrounding Amboseli National Park.Crossref | GoogleScholarGoogle Scholar |
Iranzo, E. C., Acebes, P., Estades, C. F., González, B. A., Mata, C., Malo, J. E., and Traba, J. (2018). Diffusive dispersal in a growing ungulate population: guanaco expansion beyond the limits of protected areas. Mammal Research 63, 185–196.
| Diffusive dispersal in a growing ungulate population: guanaco expansion beyond the limits of protected areas.Crossref | GoogleScholarGoogle Scholar |
Johnson, C. J., and Seip, D. R. (2008). Relationship between resource selection, distribution, and abundance: a test with implications to theory and conservation. Population Ecology 50, 145–157.
| Relationship between resource selection, distribution, and abundance: a test with implications to theory and conservation.Crossref | GoogleScholarGoogle Scholar |
Kutt, A. S., Gordon, I. J., Gompper, M., and Evans, D. (2012). Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savannas. Animal Conservation 15, 416–425.
| Variation in terrestrial mammal abundance on pastoral and conservation land tenures in north-eastern Australian tropical savannas.Crossref | GoogleScholarGoogle Scholar |
Lendrum, P. E., Anderson, C. R., Monteith, K. L., Jenks, J. A., and Bowyer, R. T. (2014). Relating the movement of a rapidly migrating ungulate to spatiotemporal patterns of forage quality. Mammalian Biology 79, 369–375.
| Relating the movement of a rapidly migrating ungulate to spatiotemporal patterns of forage quality.Crossref | GoogleScholarGoogle Scholar |
Manly, B. F. (2006). ‘Randomization, Bootstrap and Monte Carlo Methods in Biology.’ (Chapman and Hall/CRC: FL, USA.)
Miller, D. L., Burt, M. L., Rexstad, E. A., Thomas, L., and Gimenez, O. (2013). Spatial models for distance sampling data: recent developments and future directions. Appendix S1. Example DSM Analysis. Methods in Ecology and Evolution 4, 1001–1010.
| Spatial models for distance sampling data: recent developments and future directions. Appendix S1. Example DSM Analysis.Crossref | GoogleScholarGoogle Scholar |
Mishra, C., Prins, H. H., and Van Wieren, S. E. (2001). Overstocking in the Trans-Himalayan rangelands of India. Environmental Conservation 28, 279–283.
| Overstocking in the Trans-Himalayan rangelands of India.Crossref | GoogleScholarGoogle Scholar |
Mishra, C., Van Wieren, S. E., Ketner, P., Heitkönig, I., and Prins, H. H. (2004). Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans‐Himalaya. Journal of Applied Ecology 41, 344–354.
| Competition between domestic livestock and wild bharal Pseudois nayaur in the Indian Trans‐Himalaya.Crossref | GoogleScholarGoogle Scholar |
Montes, C., De Lamo, D. A., and Zavatti, J. (2000). Distribución de abundancias de guanacos (Lama guanicoe) en los distintos ambientes de Tierra del Fuego, Argentina. Mastozoología Neotropical 7, 5–14.
Montes, M. C., Carmanchahi, P. D., Rey, A., and Funes, M. C. (2006). Live shearing free-ranging guanacos (Lama guanicoe) in Patagonia for sustainable use. Journal of Arid Environments 64, 616–625.
| Live shearing free-ranging guanacos (Lama guanicoe) in Patagonia for sustainable use.Crossref | GoogleScholarGoogle Scholar |
Moore, D. M. (1983). ‘Flora of Tierra del Fuego.’ (Anthony Nelson Ltd: Shrewsbury, Shropshire, UK.)
Moraga, C. A., Funes, M. C., Pizarro, J. C., Briceño, C., and Novaro, A. J. (2015). Effects of livestock on guanaco Lama guanicoe density, movements and habitat selection in a forest–grassland mosaic in Tierra del Fuego, Chile. Oryx 49, 30–41.
| Effects of livestock on guanaco Lama guanicoe density, movements and habitat selection in a forest–grassland mosaic in Tierra del Fuego, Chile.Crossref | GoogleScholarGoogle Scholar |
Mueller, T., and Fagan, W. F. (2008). Search and navigation in dynamic environments–from individual behaviors to population distributions. Oikos 117, 654–664.
| Search and navigation in dynamic environments–from individual behaviors to population distributions.Crossref | GoogleScholarGoogle Scholar |
Murray, K., and Conner, M. M. (2009). Methods to quantify variable importance: implications for the analysis of noisy ecological data. Ecology 90, 348–355.
| Methods to quantify variable importance: implications for the analysis of noisy ecological data.Crossref | GoogleScholarGoogle Scholar | 19323218PubMed |
Namgail, T., Van Wieren, S., Mishra, C., and Prins, H. (2010). Multi-spatial co-distribution of the endangered Ladakh urial and blue sheep in the arid Trans-Himalayan mountains. Journal of Arid Environments 74, 1162–1169.
| Multi-spatial co-distribution of the endangered Ladakh urial and blue sheep in the arid Trans-Himalayan mountains.Crossref | GoogleScholarGoogle Scholar |
Nellemann, C., and Cameron, R. (1998). Cumulative impacts of an evolving oil-field complex on the distribution of calving caribou. Canadian Journal of Zoology 76, 1425–1430.
| Cumulative impacts of an evolving oil-field complex on the distribution of calving caribou.Crossref | GoogleScholarGoogle Scholar |
Ogutu, J. O., Piepho, H.-P., Said, M. Y., and Kifugo, S. C. (2014). Herbivore dynamics and range contraction in Kajiado County Kenya: climate and land use changes, population pressures, governance, policy and human–wildlife conflicts. The Open Ecology Journal 7, 9–31.
Oliva, G., González, L., Rial, P., and Livraghi, E. (2001). El ambiente en la Patagonia Austral. In ‘Ganadería Ovina Sustentable en la Patagonia Austral’. (Eds P. Borrelli, and G. Oliva.) pp. 73–80. (INTA Centro Regional Patagonia Sur: Buenos Aires, Argentina.)
Ortega, I. M., and Franklin, W. L. (1995). Social organization, distribution and movements of a migratory guanaco. Revista Chilena de Historia Natural 68, 489–500.
Parker, K. L., Barboza, P. S., and Gillingham, M. P. (2009). Nutrition integrates environmental responses of ungulates. Functional Ecology 23, 57–69.
| Nutrition integrates environmental responses of ungulates.Crossref | GoogleScholarGoogle Scholar |
Pedrana, J., Bustamante, J., Travaini, A., and Rodríguez, A. (2010). Factors influencing guanaco distribution in southern Argentine Patagonia and implications for its sustainable use. Biodiversity and Conservation 19, 3499–3512.
| Factors influencing guanaco distribution in southern Argentine Patagonia and implications for its sustainable use.Crossref | GoogleScholarGoogle Scholar |
Pettorelli, N., Gaillard, J. M., Yoccoz, N. G., Duncan, P., Maillard, D., Delorme, D., Van Laere, G., and Toïgo, C. (2005). The response of fawn survival to changes in habitat quality varies according to cohort quality and spatial scale. Journal of Animal Ecology 74, 972–981.
| The response of fawn survival to changes in habitat quality varies according to cohort quality and spatial scale.Crossref | GoogleScholarGoogle Scholar |
Pettorelli, N., Gaillard, J. M., Mysterud, A., Duncan, P., Delorme, D., Van Laere, G., Toïgo, C., and Klein, F. (2006). Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer. Oikos 112, 565–572.
| Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer.Crossref | GoogleScholarGoogle Scholar |
Posse Beaulieu, G. (1997). Interacción a nivel de comunidad entre la heterogeneidad de la vegetación y el pastoreo ovino en la estepa magallánica. Ph.D. tesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina.
Puig, S. (1995). ‘Técnicas para el Manejo del Guanaco.’ (UICN: Gland, Suiza.)
Puig, S., Videla, F., and Cona, M. I. (1997). Diet and abundance of the guanaco (Lama guanicoe Müller 1776) in four habitats of northern Patagonia, Argentina. Journal of Arid Environments 36, 343–357.
Puig, S., Rosi, M. I., Videla, F., and Mendez, E. (2011). Summer and winter diet of the guanaco and food availability for a high Andean migratory population (Mendoza, Argentina). Mammalian Biology 76, 727–734.
| Summer and winter diet of the guanaco and food availability for a high Andean migratory population (Mendoza, Argentina).Crossref | GoogleScholarGoogle Scholar |
Radovani, N. I., Funes, M. C., Walker, R. S., Gader, R., and Novaro, A. J. (2015). Guanaco Lama guanicoe numbers plummet in an area subject to poaching from oil-exploration trails in Patagonia. Oryx 49, 42–50.
| Guanaco Lama guanicoe numbers plummet in an area subject to poaching from oil-exploration trails in Patagonia.Crossref | GoogleScholarGoogle Scholar |
Raedeke, K. J. (1979). Population dynamics and socioecology of the guanaco (Lama guanicoe) of Magallanes, Chile. Ph.D. Thesis, University of Washington, Seattle, WA, USA.
Rajlevsky, J. (1998). Distribución del guanaco (Lama guanicoe) en función de la disponibilidad de refugio y alimento. Inédito. Seminario de Licenciatura en Ciencias Biológicas, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina.
Rey, A., Carmanchahi, P. D., Puig, S., and Guichón, M. L. (2009). Densidad, estructura social, actividad y manejo de guanacos silvestres (Lama guanicoe) en el sur del Neuquén, Argentina. Mastozoología Neotropical 16, 389–401.
Rey, A., Novaro, A. J., and Guichón, M. L. (2012). Guanaco (Lama guanicoe) mortality by entanglement in wire fences. Journal for Nature Conservation 20, 280–283.
| Guanaco (Lama guanicoe) mortality by entanglement in wire fences.Crossref | GoogleScholarGoogle Scholar |
Ripple, W. J., Newsome, T. M., Wolf, C., Dirzo, R., Everatt, K. T., Galetti, M., Hayward, M. W., Kerley, G. I., Levi, T., and Lindsey, P. A. (2015). Collapse of the world’s largest herbivores. Science Advances 1, e1400103.
| Collapse of the world’s largest herbivores.Crossref | GoogleScholarGoogle Scholar | 26601172PubMed |
Ritchie, E. G., Martin, J. K., Krockenberger, A. K., Garnett, S., and Johnson, C. N. (2008). Large‐herbivore distribution and abundance: intra‐and interspecific niche variation in the tropics. Ecological Monographs 78, 105–122.
| Large‐herbivore distribution and abundance: intra‐and interspecific niche variation in the tropics.Crossref | GoogleScholarGoogle Scholar |
Sarno, R. J., Bank, M. S., Stern, H. S., and Franklin, W. L. (2003). Forced dispersal of juvenile guanacos (Lama guanicoe): causes, variation, and fates of individuals dispersing at different times. Behavioral Ecology and Sociobiology 54, 22–29.
| Forced dispersal of juvenile guanacos (Lama guanicoe): causes, variation, and fates of individuals dispersing at different times.Crossref | GoogleScholarGoogle Scholar |
Schiavini, A., and Narbaiza, C. (2015). Estado de situación de los conflictos derivados de las poblaciones caninas en Tierra del Fuego. Informe técnico para el Comité de Emergencia Agroganadero y de Alerta Sanitaria de Tierra del Fuego. (CADIC-CONICET: Tierra del Fuego, Argentina.)
Schroeder, N. M., Matteucci, S. D., Moreno, P. G., Gregorio, P., Ovejero, R., Taraborelli, P., and Carmanchahi, P. D. (2014). Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models. PLoS One 9, e85960.
| Spatial and seasonal dynamic of abundance and distribution of guanaco and livestock: insights from using density surface and null models.Crossref | GoogleScholarGoogle Scholar | 24465812PubMed |
Selzer, L., Moretto, A., Flores, C., Escobar, J., Dieguez, H., and Schiavini, A. (2015). Patrones de PPNA en el Ecotono Fueguino. In ‘XXVI Reunion Argentina de Ecología’. (Eds F. V. Scholz, and S. J. Bucci.) pp. 223–224. (Universitaria de la Patagonia – EDUPA, Asociación Argentina de Ecología: Comodoro Rivadavia, Argentina.)
Stewart, K. M., Bowyer, R. T., Kie, J. G., Cimon, N. J., and Johnson, B. K. (2002). Temporospatial distributions of elk, mule deer, and cattle: resource partitioning and competitive displacement. Journal of Mammalogy 83, 229–244.
| Temporospatial distributions of elk, mule deer, and cattle: resource partitioning and competitive displacement.Crossref | GoogleScholarGoogle Scholar |
Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R., Marques, T. A., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
| Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar | 20383262PubMed |
Travaini, A., Zapata, S. C., Bustamante, J., Pedrana, J., Zanón, J. I., and Rodríguez, A. (2015). Guanaco abundance and monitoring in southern Patagonia: distance sampling reveals substantially greater numbers than previously reported. Zoological Studies (Taipei, Taiwan) 54, 23.
Tucker, B., Mahoney, S., Greene, B., Menchenton, E., and Russell, L. (1991). The influence of snow depth and hardness on winter habitat selection by caribou on the southwest coast of Newfoundland. Rangifer 7, 160–163.
Tuhkanen, S. (1992). The climate of Tierra del Fuego from a vegetation geographical point of view and its ecoclimatic counterparts elsewhere. Acta Botanica Fennica 145, 1–64.
Tveraa, T., Stien, A., Bårdsen, B.-J., and Fauchald, P. (2013). Population densities, vegetation green-up, and plant productivity: impacts on reproductive success and juvenile body mass in reindeer. PLoS One 8, e56450.
| Population densities, vegetation green-up, and plant productivity: impacts on reproductive success and juvenile body mass in reindeer.Crossref | GoogleScholarGoogle Scholar | 23451049PubMed |
US Geological Survey (USGS) (2010). Shuttle Radar Topography Mission. Data available from the U.S. Geological Survey.
Valente, A. M., Marques, T. A., Fonseca, C., and Torres, R. T. (2016). A new insight for monitoring ungulates: density surface modelling of roe deer in a Mediterranean habitat. European Journal of Wildlife Research 62, 577–587.
| A new insight for monitoring ungulates: density surface modelling of roe deer in a Mediterranean habitat.Crossref | GoogleScholarGoogle Scholar |
Wurstten, A., Novaro, A. J., and Walker, R. S. (2014). Habitat use and preference by guanacos, vicuñas, and livestock in an altitudinal gradient in northwest Argentina. European Journal of Wildlife Research 60, 35–43.
| Habitat use and preference by guanacos, vicuñas, and livestock in an altitudinal gradient in northwest Argentina.Crossref | GoogleScholarGoogle Scholar |
Young, J. K., and Franklin, W. L. (2004a). Activity budget patterns in family-group and solitary territorial male guanacos. Revista Chilena de Historia Natural 77, 617–625.
| Activity budget patterns in family-group and solitary territorial male guanacos.Crossref | GoogleScholarGoogle Scholar |
Young, J. K., and Franklin, W. L. (2004b). Territorial fidelity of male guanacos in the Patagonia of southern Chile. Journal of Mammalogy 85, 72–78.
| Territorial fidelity of male guanacos in the Patagonia of southern Chile.Crossref | GoogleScholarGoogle Scholar |
Zanini, F., Leiva, D., Cabeza, S., Elissondo, C., Olmedo, E., Pérez, H., Buena, P., and Grande, R. (2008). ‘Poblaciones Caninas Asilvestradas: Impacto en la Producción Pecuaria de Tierra del Fuego, Argentina.’ (Publicación PCH-Ley Ovina UEP Tierra del Fuego: Buenos Aires, Argentina.)
Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A., and Smith, G. M. (2009). ‘Mixed Effects Models and Extensions in Ecology with R.’ (Springer Science & Business Media: New York, NY, USA.)