Density and activity patterns of Andean cat and pampas cat (Leopardus jacobita and L. colocolo) in the Bolivian Altiplano
Juan Carlos Huaranca A B C I , Ma. Lilian Villalba B , Nuno Negrões D , Jaime E. Jiménez A E , David W. Macdonald F and Luis F. Pacheco G HA Programa de Doctorado en Ciencias, mención Conservación y Manejo de Recursos Naturales, Universidad de Los Lagos, Avenida Fushlocher 1305, Osorno, Chile.
B Andean Cat Alliance, www.gatoandino.org.
C Centro de Biodiversidad y Genética, Universidad Mayor de San Simón, Calle Sucre frente al Parque La Torre, Cochabamba, Bolivia.
D CESAM and Departamento de Biología, Universidade de Aveiro, Campus Universitário de Santiago 3810-193, Aveiro, Portugal.
E Department of Biological Sciences, Advanced Environmental Research Institute, University of North Texas, College of Science, TX 76203, USA.
F Wildlife Conservation Research Unit, Department of Zoology, The Recanati-Kaplan Centre, University of Oxford, Tubney House, Abingdon Road, Tubney, Abingdon, OX13 5QL, UK.
G Colección Boliviana de Fauna, Instituto de Ecología, Carrera de Biología, Universidad Mayor de San Andrés, Calle 27 Cota Cota, La Paz, Bolivia.
H Centro de Estudios en Biología Teórica y Aplicada, BIOTA, Avenida Las Retamas No. 15, entre Calles 34 y 35, La Paz, Bolivia.
I Corresponding author. Email: jchuaranca@gmail.com
Wildlife Research 47(1) 68-76 https://doi.org/10.1071/WR19053
Submitted: 19 March 2019 Accepted: 6 September 2019 Published: 18 December 2019
Abstract
Context: Understanding the factors that determine the distribution and abundance of species is an important aim of ecology and prerequisite for conservation. The Andean cat (Leopardus jacobita) and the pampas cat (L. colocolo) are two of the least studied felids. Both are threatened, of similar size and live sympatrically in the Andes of Argentina, Bolivia, Chile, and Perú.
Aims: We aimed at estimating the population densities of the Andean cat and pampas cat in two continuous areas and to analyse the activity patterns of these two species and that of mountain vizcacha (Lagidium viscacia), the main prey of the Andean cat.
Methods: We used camera traps to evaluate the density of both felid species using the space explicit capture recapture (SECR) framework and the overlap in their activity patterns with that of mountain vizcacha, using the kernel-density estimator in two contiguous areas in the Bolivian Altiplano, at Muro-Amaya and at Micani, both within the Ciudad de Piedra region.
Key results: Andean cat density was estimated at 6.45 individuals per 100 km2 in Muro-Amaya and 6.91 individuals per 100 km2 in Micani, whereas the density of the pampas cat was 5.31 individuals per 100 km2 and 8.99 individuals per 100 km2 respectively. The Andean cat was mainly nocturnal, whereas the pampas cat was cathemeral. The activity of the mountain vizcacha overlapped less with that of its specialised predator, the Andean cat, than with that of the pampas cat.
Conclusions: In line with our predictions, the Andean cat, considered a more specialised nocturnal hunter, particularly of mountain vizcacha, had lower population densities than did the more generalist pampas cat.
Implications: Low population densities, as compared with theoretical expectations, pose an additional conservation problem for these felids, in an area such as the high Andes.
Additional keywords: camera-trapping, endangered species, generalist species, overlap, spatially explicit capture–recapture, specialist species.
References
Arispe, R., Rumiz, D., and Noss, A. (2007). Six species of cats registered by camera trap surveys of tropical dry forest in Bolivia. Cat News 46, 36–38.Balme, G. A., Hunter, L. T. B., and Slotow, R. (2009). Evaluating methods for counting cryptic carnivores. The Journal of Wildlife Management 73, 433–441.
| Evaluating methods for counting cryptic carnivores.Crossref | GoogleScholarGoogle Scholar |
Blankenship, T. L., Haines, A. M., Tewes, M. E., and Silvy, N. J. (2006). Comparing survival and cause-specific mortality between resident and transient bobcats Lynx rufus. Wildlife Biology 12, 297–303.
| Comparing survival and cause-specific mortality between resident and transient bobcats Lynx rufus.Crossref | GoogleScholarGoogle Scholar |
Borchers, D. L., and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64, 377–385.
| Spatially explicit maximum likelihood methods for capture–recapture studies.Crossref | GoogleScholarGoogle Scholar | 17970815PubMed |
Carbone, C., and Gittleman, J. L. (2002). A common rule for the scaling of carnivore density. Science 295, 2273–2276.
| A common rule for the scaling of carnivore density.Crossref | GoogleScholarGoogle Scholar | 11910114PubMed |
Caruso, N., Manfredi, C., Vidal, E. M. L., Casenave, E. B., and Lucherini, M. (2012). First density estimation of two sympatric small cats, Leopardus colocolo and Leopardus geoffroyi, in a shrubland area of central Argentina. Annales Zoologici Fennici 49, 181–191.
| First density estimation of two sympatric small cats, Leopardus colocolo and Leopardus geoffroyi, in a shrubland area of central Argentina.Crossref | GoogleScholarGoogle Scholar |
Cossíos, D., Beltran-Saavedra, F., Bennet, M., Fajardo, U., Lucherini, M., Merino, M. J., Marino, J., Napolitano, C., Palacios, R., Perovic, P., Ramirez, Y., Villalba, L., Walker, S., and Sillero-Zubiri, C. (2007). ‘Manual de Metologías para Relevamiento de Carnivoros Alto Andinos.’ (Alianza Gato Andino: Buenos Aires, Argentina.)
Delibes-Mateos, M., Díaz-Ruiz, F., Caro, J., and Ferreras, P. (2014). Activity patterns of the vulnerable guiña (Leopardus guigna) and its main prey in the Valdivian rainforest of southern Chile. Mammalian Biology. Zeitschrift fur Saugetierkunde 79, 393–397.
Efford, M. (2014). Bias from heterogeneous usage of space in spatially explicit capture-recapture analyses. Methods in Ecology and Evolution 5, 599–602.
| Bias from heterogeneous usage of space in spatially explicit capture-recapture analyses.Crossref | GoogleScholarGoogle Scholar |
Efford, M. G., Borchers, D. L., and Byrom, A. E. (2009). Density estimation by spatially explicit capture–recapture: likelihood-based methods. In ‘Modeling Demographic Processes in Marked Populations’. (Eds D. L. Thomson, E. G. Cooch, and M. J. Conroy.) pp. 255–269. (Springer: New York, NY, USA.)
Fajardo, U., Cossíos, D., and Pacheco, V. (2014). Dieta de Leopardus colocolo (Carnivora: Felidae) en la Reserva Nacional de Junín, Junín, Perú. Revista Peruana de Biología 21, 61–70.
| Dieta de Leopardus colocolo (Carnivora: Felidae) en la Reserva Nacional de Junín, Junín, Perú.Crossref | GoogleScholarGoogle Scholar |
Foster, V. C., Sarmento, P., Sollmann, R., Tôrres, N., Jácomo, A. T., Negrões, N., Fonseca, C., and Silveira, L. (2013). Jaguar and puma activity patterns and predator–prey interactions in four Brazilian biomes. Biotropica 45, 373–379.
| Jaguar and puma activity patterns and predator–prey interactions in four Brazilian biomes.Crossref | GoogleScholarGoogle Scholar |
Gardner, B., Reppucci, J., Lucherini, M., and Royle, J. A. (2010). Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies. Ecology 91, 3376–3383.
| Spatially explicit inference for open populations: estimating demographic parameters from camera-trap studies.Crossref | GoogleScholarGoogle Scholar | 21141198PubMed |
Gobierno Autónomo Municipal de Calacoto (2008). ‘Plan de Desarrollo Municipal, Municipio de Calacoto 2008–2012.’ (Gobierno Autónomo Municipal de Calacoto: La Paz, Bolivia.)
Haines, A. M., Grassman, L. I., and Tewes, M. E. (2004). Survival of radiocollared adult leopard cats Prionailurus bengalensis in Thailand. Acta Theriologica 49, 349–356.
| Survival of radiocollared adult leopard cats Prionailurus bengalensis in Thailand.Crossref | GoogleScholarGoogle Scholar |
Huaranca, J. C., and Villalba, M. L. (2011). ‘Opciones para el Establecimiento de la Estación de Investigación IE-AGA. Conservation of Andean Cat in Ciudad de Piedra Area.’ (Alianza Gato Andino: La Paz, Bolivia.)
Huaranca, J. C., Pacheco, L. F., Villalba, L., and Torrez, A. R. (2013). Ciudad de Piedra, an important site for the conservation of Andean cats in Bolivia. Cat News 58, 1–8.
Ivan, J. S., White, G. C., and Shenk, T. M. (2013). Using simulation to compare methods for estimating density from capture–recapture data. Ecology 94, 817–826.
| Using simulation to compare methods for estimating density from capture–recapture data.Crossref | GoogleScholarGoogle Scholar |
Jiménez, J. E., Yáñez, J. L., Tabilo, E. L., and Jaksic, F. M. (1996). Niche-complementarity of South American foxes: reanalysis and test of a hypothesis. Revista Chilena de Historia Natural 69, 113–123.
Jones, M., and Dayan, T. (2000). Foraging behavior and microhabitat use by spiny mice, Acomys cahirinus and A. russatus, in the presence of Blanford’s fox (Vulpes cana) odor. Journal of Chemical Ecology 26, 455–469.
| Foraging behavior and microhabitat use by spiny mice, Acomys cahirinus and A. russatus, in the presence of Blanford’s fox (Vulpes cana) odor.Crossref | GoogleScholarGoogle Scholar |
Kelt, D. A., and Van Vuren, D. H. (2001). The ecology and macroecology of mammalian home range area. American Naturalist 157, 637–645.
| The ecology and macroecology of mammalian home range area.Crossref | GoogleScholarGoogle Scholar | 18707280PubMed |
Kolowski, J. M., and Woolf, A. (2002). Microhabitat use by bobcats in southern Illinois. The Journal of Wildlife Management 66, 822–832.
| Microhabitat use by bobcats in southern Illinois.Crossref | GoogleScholarGoogle Scholar |
Linkie, M., and Ridout, M. S. (2011). Assessing tiger–prey interactions in Sumatran rainforests: tiger–prey temporal interactions. Journal of Zoology 284, 224–229.
| Assessing tiger–prey interactions in Sumatran rainforests: tiger–prey temporal interactions.Crossref | GoogleScholarGoogle Scholar |
López, G., López-Parra, M., Garrote, G., Fernández, L., del Rey-Wamba, T., Arenas-Rojas, R., García-Tardío, M., Ruiz, G., Zorrilla, I., Moral, M., and Simón, M. A. (2014). Evaluating mortality rates and causalities in a critically endangered felid across its whole distribution range. European Journal of Wildlife Research 60, 359–366.
| Evaluating mortality rates and causalities in a critically endangered felid across its whole distribution range.Crossref | GoogleScholarGoogle Scholar |
Lucherini, M., Luengos Vidal, E., and Merino, M. J. (2008). How rare is the rare Andean cat? mammalia 72, 95–101.
| How rare is the rare Andean cat?Crossref | GoogleScholarGoogle Scholar |
Lucherini, M., Reppucci, J. I., Walker, R. S., Villalba, M. L., Wurstten, A., Gallardo, G., Iriarte, A., Villalobos, R., and Perovic, P. (2009). Activity pattern segregation of carnivores in the high Andes. Journal of Mammalogy 90, 1404–1409.
| Activity pattern segregation of carnivores in the high Andes.Crossref | GoogleScholarGoogle Scholar |
Lucherini, M., Eizirik, E., de Oliveira, T. G., Pereira, J., and Williams, R. (2016). Leopardus colocolo. In ‘The IUCN Red List of Threatened Species 2016: e.T15309A97204446’. Available at http://www.iucnredlist.org/details/15309/0 [verified 12 May 2017].
Macdonald, D. W., and Loveridge, A. J. (Eds) (2010). ‘Biology and Conservation of Wild Felids.’ (Oxford University Press: Oxford, UK.)
Marino, J., Lucherini, M., Villalba, M. L., Bennett, M., Cossiós, D. E., Iriarte, A., Perovic, P., and Sillero-Zubiri, C. (2010). Highland cats: ecology and conservation of the rare and elusive Andean cat. In ‘Biology and Conservation of Wild Felids’. (Eds D. W. Macdonald and A. J. Loveridge.) pp. 581–596. (Oxford University Press: Oxford, UK.)
Marino, J., Bennett, M., Cossíos, D., Iriarte, A., Lucherini, M., Pliscoff, P., Sillero-Zubiri, C., Villalba, L., and Walker, S. (2011). Bioclimatic constraints to Andean cat distribution: a modelling application for rare species: bioclimatic constraints to Andean cat distribution. Diversity & Distributions 17, 311–322.
| Bioclimatic constraints to Andean cat distribution: a modelling application for rare species: bioclimatic constraints to Andean cat distribution.Crossref | GoogleScholarGoogle Scholar |
McNab, B. K. (1963). Bioenergetics and the determination of home range size. American Naturalist 97, 133–140.
| Bioenergetics and the determination of home range size.Crossref | GoogleScholarGoogle Scholar |
Napolitano, C., Bennett, M., Johnson, W. E., O’Brien, S. J., Marquet, P. A., Barría, I., Poulin, E., and Iriarte, A. (2008). Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Molecular Ecology 17, 678–690.
| Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples.Crossref | GoogleScholarGoogle Scholar | 18205675PubMed |
Noss, A. J., Gardner, B., Maffei, L., Cuéllar, E., Montaño, R., Romero-Muñoz, A., Sollman, R., and O’Connell, A. F. (2012). Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape: density estimation with camera traps in the Chaco. Animal Conservation 15, 527–535.
| Comparison of density estimation methods for mammal populations with camera traps in the Kaa-Iya del Gran Chaco landscape: density estimation with camera traps in the Chaco.Crossref | GoogleScholarGoogle Scholar |
Nowell, K., and Jackson, P. (1996). ‘Wild Cats: Status Survey and Conservation Action Plan’. (Gland: IUCN.) Available at http://www.catsg.org/fileadmin/filesharing/4.Library/4.1._Cat_Library/cat-action-plan-infoform.pdf [verified 5 May 2019].
Pereira, L. J. A. (2009). Efectos del manejo ganadero y disturbios asociados sobre la ecología trófica y espacial y la demografía del gato montés (Leopardus geoffroyi) en el desierto del monte, Argentina. Ph.D. Thesis, Universidad de Buenos Aires, Argentina.
R Core Team (2016). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at https://www.R-project.org/ [verified 6 May 2016].
Reppucci, J., Gardner, B., and Lucherini, M. (2011). Estimating detection and density of the Andean cat in the high Andes. Journal of Mammalogy 92, 140–147.
| Estimating detection and density of the Andean cat in the high Andes.Crossref | GoogleScholarGoogle Scholar |
Ridout, M. S., and Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological & Environmental Statistics 14, 322–337.
| Estimating overlap of daily activity patterns from camera trap data.Crossref | GoogleScholarGoogle Scholar |
Riley, S. P. D. (2006). Spatial ecology of bobcats and gray foxes in urban and rural zones of a national park. The Journal of Wildlife Management 70, 1425–1435.
| Spatial ecology of bobcats and gray foxes in urban and rural zones of a national park.Crossref | GoogleScholarGoogle Scholar |
Ross, J., Hearn, A. J., Johnson, P. J., and Macdonald, D. W. (2013). Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk: activity of Sunda clouded leopards and their prey. Journal of Zoology 290, 96–106.
| Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk: activity of Sunda clouded leopards and their prey.Crossref | GoogleScholarGoogle Scholar |
Royle, J. A., and Gardner, B. (2011). Hierarchical spatial capture–recapture models for estimating density from trapping arrays. In ‘Camera Traps in Animal Ecology: Methods and Analyses’. (Eds A. F. O’Connell, J. D. Nichols, and K. U. Karanth.) pp. 163–190. (Springer: New York, NY, USA.)
Royle, J. A., Nichols, J. D., Karanth, K. U., and Gopalaswamy, A. M. (2009). A hierarchical model for estimating density in camera-trap studies. Journal of Applied Ecology 46, 118–127.
| A hierarchical model for estimating density in camera-trap studies.Crossref | GoogleScholarGoogle Scholar |
Santini, L., Isaac, N. J. B., Maiorano, L., Ficetola, G. F., Huijbregts, M. A. J., Carbone, C., and Thuiller, W. (2018). Global drivers of population density in terrestrial vertebrates. Global Ecology and Biogeography 27, 968–979.
| Global drivers of population density in terrestrial vertebrates.Crossref | GoogleScholarGoogle Scholar |
Santos, F., Carbone, C., Wearn, O. R., Rowcliffe, J. M., Espinosa, S., Lima, M. G. M., Ahumada, J. A., Gonçalves, A. L. S., Trevelin, L. C., Alvarez-Loayza, P., Spironello, W. R., Jansen, P. A., Juen, L., and Peres, C. A. (2019). Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. PLoS One 14, e0213671.
| Prey availability and temporal partitioning modulate felid coexistence in Neotropical forests. Crossref | GoogleScholarGoogle Scholar | 30998741PubMed |
Schoener, T. W. (1974). Resource partitioning in ecological communities. Science 185, 27–39.
| Resource partitioning in ecological communities.Crossref | GoogleScholarGoogle Scholar | 17779277PubMed |
Silva, M., Brimacombe, M., and Downing, J. A. (2001). Effects of body mass, climate, geography, and census area on population density of terrestrial mammals. Global Ecology and Biogeography 10, 469–485.
| Effects of body mass, climate, geography, and census area on population density of terrestrial mammals.Crossref | GoogleScholarGoogle Scholar |
Sollmann, R., Gardner, B., and Belant, J. L. (2012). How does spatial study design influence density estimates from spatial capture-recapture models? PLoS One 7, e34575.
| How does spatial study design influence density estimates from spatial capture-recapture models?Crossref | GoogleScholarGoogle Scholar | 23285226PubMed |
Suraci, J. P., Clinchy, M., and Zanette, L. Y. (2017). Do large carnivores and mesocarnivores have redundant impacts on intertidal prey? PLoS One 12, e0170255.
| Do large carnivores and mesocarnivores have redundant impacts on intertidal prey?Crossref | GoogleScholarGoogle Scholar | 28085962PubMed |
Tarifa, T., and Yensen, E. (2001). Mammals of Bolivian Polylepis woodlands. Revista Boliviana de Ecologia 9, 29–44.
Tellaeche, C. G. (2015). Ecología y uso del espacio de dos especies de félidos, Gato Andino (Leopardus jacobita) y Gato del Pajonal (L. colocolo) en la región Altoandina, Prov. de Jujuy. Ph.D. Thesis, Universidad Nacional del Sur, Bahia Blanca, Argentina.
Teran, J., and Huaranca, J. C. (2012). ‘Evaluación de la Vegetación del Área de Ciudad de Piedra, La Paz-Bolivia. Conservation of Andean Cat in Ciudad de Piedra Area.’ (Andean Cat Alliance: La Paz, Bolivia.)
Theuerkauf, J., Jedrzejewski, W., Schmidt, K., Okarma, H., Ruczynski, I., Sniezko, S., and Gula, R. (2003b). Daily patterns and duration of wolf activity in the Bialowieza Forest, Poland. Journal of Mammalogy 84, 243–253.
| Daily patterns and duration of wolf activity in the Bialowieza Forest, Poland.Crossref | GoogleScholarGoogle Scholar |
Torrico, J. O. (2009). Distribución, abundancia relativa de rastros y dieta de carnívoros alto andinos en dos zonas de la Reserva Eduardo Avaroa, Potosí-Bolivia. B.Sc. Thesis, Universidad Mayor de San Andrés, La Paz, Bolivia.
Villalba, M. L., Alfaro, F. D., Huaranca, J. C., and Gallardo, G. (2009a). Leopardus jacobita. In ‘Libro Rojo de la Fauna Silvestre de Vertebrados de Bolivia’. pp. 451–453. (Ministerio de Medio Ambiente y Agua: La Paz, Bolivia.)
Villalba, M. L., Delgado, E., and Berna, M. (2009b). Activity patterns and home range of Andean cat and Pampas cat in southern Bolivia. In ‘10th International Mammalogical Congress Abstracts’. (Eds. E. Nevo, M. Mares, C. Johnson, G. Marroig, and P. Marquet). p. 187. (Mendoza, Argentina.)
Villalba, M. L., Gallardo, G., and Huaranca, J. C. (2009c). Leopardus colocolo. In ‘Libro Rojo de la Fauna Silvestre de Vertebrados de Bolivia’. pp. 525–527. (Ministerio de Medio Ambiente y Agua: La Paz, Bolivia.)
Villalba, M. L., Huaranca, J. C., Gallardo, G., Viscarra, M. E., Torrico, J. O., and Bernal, N. (2009d). Distribution and diet of sympatric wildcats Leopardus jacobita and L. colocolo, in the Andes at Bolivia. In ‘10th International Mammalogical Congress Abstracts’. (Eds. E. Nevo, M. Mares, C. Johnson, G. Marroig, and P. Marquet). p. 113. (Mendoza, Argentina.)
Villalba, L., Lucherini, M., Walker, R. S., Lagos, N., Cossíos, D., Bennett, M., and Huaranca, J. C. (2016). Leopardus jacobita. In ‘The IUCN Red List of Threatened Species 2016: e.T15452A50657407’. Available at http://www.iucnredlist.org/details/15452/0 [verified 12 May 2017].
Viscarra, M. E. (2008). Distribución, densidad y dieta de carnívoros en cuatro tipos de hábitat en un área de la Provincia Sud Lípez (Potosí-Bolivia). B.Sc. Thesis, Universidad Mayor de San Andrés, La Paz, Bolivia.
Walker, R. S., Novaro, A. J., Perovic, P., Palacios, R., Donadio, E., Lucherini, M., Pia, M., and López, M. S. (2007). Diets of three species of Andean carnivores in high-altitude deserts of Argentina. Journal of Mammalogy 88, 519–525.
| Diets of three species of Andean carnivores in high-altitude deserts of Argentina.Crossref | GoogleScholarGoogle Scholar |
Yensen, E., and Seymour, K. L. (2000). Oreailurus jacobita. Mammalian Species No. 644, 1–6.
| Oreailurus jacobita.Crossref | GoogleScholarGoogle Scholar |
Zanón-Martínez, J. I., Kelly, M. J., Mesa-Cruz, J. B., Sarasola, J. H., Dehart, C., and Travaini, A. (2016). Density and activity patterns of pumas in hunted and non-hunted areas in central Argentina. Wildlife Research 43, 449–460.
| Density and activity patterns of pumas in hunted and non-hunted areas in central Argentina.Crossref | GoogleScholarGoogle Scholar |