Density and activity patterns of pumas in hunted and non-hunted areas in central Argentina
Juan I. Zanón-Martínez A D , Marcella J. Kelly B , J. Bernardo Mesa-Cruz B , José H. Sarasola A , Clark DeHart B and Alejandro Travaini CA Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Ciencias de la Tierra y Ambientales de La Pampa (INCITAP), Centro para el Estudio y Conservación de las Aves Rapaces en Argentina (CECARA) and Universidad Nacional de La Pampa (UNLPam), Avenida Uruguay 151, 6300 Santa Rosa, La Pampa, Argentina.
B Virginia Tech, Department of Fish and Wildlife Conservation, 146 Cheatham Hall, Blacksburg, VA 24061-0321, USA.
C Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Centro de Investigaciones de Puerto Deseado, Universidad Nacional de la Patagonia Austral, C.C. 238, Avenida Prefectura Naval S/N, 9050 Puerto Deseado, Santa Cruz, Argentina.
D Corresponding author. Email: jzanon@conicet.gov.ar
Wildlife Research 43(6) 449-460 https://doi.org/10.1071/WR16056
Submitted: 23 March 2016 Accepted: 10 August 2016 Published: 19 September 2016
Abstract
Context: Hunting has demographic effects on large and medium carnivores, causing population reductions and even extinctions worldwide. Yet, there is little information on carnivore demographic parameters and spatial and temporal land-use patterns in areas experiencing sport hunting, thus hindering effective conservation plans for such areas.
Aims: We estimated densities and determined activity patterns of pumas (Puma concolor) from camera-trapping surveys in a protected area and in a game reserve with sport hunting, in the Caldén forest of central Argentina.
Methods: We used both non-spatial and spatial mark–resight techniques to estimate and compare puma densities and we used kernel-density estimation (KDE) techniques to analyse and compare puma activity patterns between study sites.
Key results: Puma densities estimated from spatial models were lower than densities estimated from non-spatial mark–resight techniques. However, estimated density of pumas in the protected area was always higher (range = 4.89–9.32 per 100 km2) than in the game reserve (range = 0.52–1.98 per 100 km2), regardless of the estimation technique used. Trapping rates for large mammal prey were similar across sites. Pumas exhibited more nocturnal behaviour and high activity peaks at 0600 hours and 1100 hours in the hunted game reserve, whereas puma activity was spread more evenly around the clock in the protected area.
Conclusions: The higher puma densities in the protected area reflect the potential for such areas to function as refugia in a human-dominated landscape. However, the game reserve had a lower puma density than the protected area despite high trap rates of large prey, indicating that these areas may function as attractive sinks.
Implications: Our results could indicate that puma sport hunting in the Caldén forest should be managed at a metapopulation, regional level, and include both no-hunting areas (protected area, as potential sources) and hunting areas (game reserves, as potential sinks). Considering that our study areas were small and that this was an unreplicated study, we urge more research to be conducted, so as to determine whether sport hunting is compatible with puma conservation in the region.
Additional keywords: Caldén forest, camera surveys, hunting, mark–resight, population density, Puma concolor.
References
Amieva, E. O. (1993). ‘El Parque Luro’. (Fondo Editorial Pampeano: Santa Rosa, Argentina.)Anderson, C. R., Lindzey, F., Knopff, K. H., Jalkotzy, M. G., and Boyce, M. S. (2010). Cougar management in North America. In ‘Cougar: Ecology and Conservation’. (Eds M. Hornocker and S. Negri.) pp. 41–54. (The University of Chicago Press: Chicago, IL.)
Arnason, A. N., Schwarz, C. J., and Gerrard, J. M. (1991). Estimating closed population size and number of marked animals from sighting data. The Journal of Wildlife Management 55, 716–730.
| Estimating closed population size and number of marked animals from sighting data.Crossref | GoogleScholarGoogle Scholar |
Batschelet, E. (1981). ‘Circular Statistics in Biology.’ (Academic Press: New York.)
Borchers, D. L., and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64, 377–385.
| Spatially explicit maximum likelihood methods for capture-recapture studies.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1czhvVWlsA%3D%3D&md5=985c516dc09935128fa0db338b001e93CAS | 17970815PubMed |
Burnham, K. P., and Anderson, D. (2002). ‘Model Selection and Multi-model Inference: a Practical Information-theoretic Approach.’ 2nd edn. (Springer: New York.)
Cabrera, A. L. (1976). ‘Regiones Fitogeográficas Argentinas.’ (ACME: Buenos Aires.)
Cano, E., Fernández, B., and Montes, D. M. (1980). ‘Inventario Integrado de los Recursos Naturales de la Provincia de La Pampa.’ (UNLPam, Gobierno de La Pampa e INTA: Buenos Aires.)
Chandler, R. B., and Royle, J. A. (2013). Spatially-explicit models for inference about density in unmarked populations. The Annals of Applied Statistics 7, 936–954.
| Spatially-explicit models for inference about density in unmarked populations.Crossref | GoogleScholarGoogle Scholar |
Cooley, H. S., Wielgus, R. B., Koehler, G. M., Robinson, H. S., and Maletzke, B. T. (2009a). Does hunting regulate cougar populations? A test of the compensatory mortality hypothesis. Ecology 90, 2913–2921.
| Does hunting regulate cougar populations? A test of the compensatory mortality hypothesis.Crossref | GoogleScholarGoogle Scholar | 19886499PubMed |
Cooley, H. S., Wielgus, R. B., Koehler, G., and Maletzke, B. (2009b). Source populations in carnivore management: cougar demography and emigration in a lightly hunted population. Animal Conservation 12, 321–328.
| Source populations in carnivore management: cougar demography and emigration in a lightly hunted population.Crossref | GoogleScholarGoogle Scholar |
Creel, S., Becker, M., Christianson, D., Dröge, E., Hammerschlag, N., Hayward, M. W., Karanth, U., Loveridge, A., Macdonald, D. W., Matandiko, W., M’soka, J., Murray, D., Rosenblatt, E., and Schuette, P. (2015). Questionable policy for large carnivore hunting. Science 350, 1473–1475.
| Questionable policy for large carnivore hunting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XltlentQ%3D%3D&md5=2737f70f01fd35770015e0f622da9575CAS | 26680181PubMed |
Di Bitetti, M. S., Paviolo, A., and De Angelo, C. (2006). Density, habitat use and activity patterns of ocelots (Leopardus pardalis) in the Atlantic Forest of Misiones, Argentina. Journal of Zoology 270, 153–163.
Dice, L. R. (1938). Some census methods for mammals. The Journal of Wildlife Management 2, 119–180.
| Some census methods for mammals.Crossref | GoogleScholarGoogle Scholar |
Donadio, E., Novaro, A. J., Buskirk, S. W., Wurstten, A., Vitali, M. S., and Monteverde, M. J. (2010). Evaluating a potentially strong trophic interaction: pumas and wild camelids in protected areas of Argentina. Journal of Zoology 280, 33–40.
| Evaluating a potentially strong trophic interaction: pumas and wild camelids in protected areas of Argentina.Crossref | GoogleScholarGoogle Scholar |
Efford, M. (2004). Density estimation in live-trapping studies. Oikos 106, 598–610.
| Density estimation in live-trapping studies.Crossref | GoogleScholarGoogle Scholar |
ESRI (1999). Getting to Know ArcView GIS: the Geographic Information System (GIS) for Everyone. Environmental Systems Research Institute, Inc., Redlands, CA
Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B. (2004). ‘Bayesian Data Analysis.’ 2nd edn. (CRC/Chapman & Hall: Boca Raton, FL.)
Gill, R. B. (2010). To save a mountain lion: evolving philosophy of nature and cougars. In ‘Cougar: Ecology and Conservation’. (Eds M. Hornocker and S. Negri.) pp. 5–16. (University of Chicago Press: Chicago, IL.)
Gittleman, J. L., MacDonald, D. W., Wayne, R. K., and Gosling, M. (2001). ‘Carnivore Conservation.’ (Cambridge University Press: Cambridge, UK.)
González-Roglich, M., Southworth, J., and Branch, L. C. (2012). The role of private lands for conservation: land cover change analysis in the Caldenal savanna ecosystem, Argentina. Applied Geography (Sevenoaks, England) 34, 281–288.
| The role of private lands for conservation: land cover change analysis in the Caldenal savanna ecosystem, Argentina.Crossref | GoogleScholarGoogle Scholar |
Kane, M. D., Morin, D. J., and Kelly, M. J. (2015). Potential for camera-traps and spatial mark–resight models to improve monitoring of the critically endangered West African lion (Panthera leo). Biodiversity and Conservation 24, 3527–3541.
| Potential for camera-traps and spatial mark–resight models to improve monitoring of the critically endangered West African lion (Panthera leo).Crossref | GoogleScholarGoogle Scholar |
Karanth, K. U. (1995). Estimating tiger Panthera tigris populations from camera-trap data using capture–recapture models. Biological Conservation 71, 333–338.
| Estimating tiger Panthera tigris populations from camera-trap data using capture–recapture models.Crossref | GoogleScholarGoogle Scholar |
Karanth, K. U., and Nichols, J. (2002). ‘Monitoring Tigers and their Prey: a Manual for Researchers, Managers and Conservationists in Tropical Asia.’ (Center for Wildlife Studies: Bangalore, India.)
Keehner, J. R., Wielgus, R. B., Maletzke, B. T., and Swanson, M. E. (2015). Effects of male targeted harvest regime on sexual segregation in mountain lion. Biological Conservation 192, 42–47.
| Effects of male targeted harvest regime on sexual segregation in mountain lion.Crossref | GoogleScholarGoogle Scholar |
Kelly, M. J., Betsch, J., Wultsch, C., Mesa, B., and Mills, S. L. (2012Noninvasive sampling for carnivores. In ‘Carnivore Ecology and Conservation: a Handbook of Techniques’. (Eds L. Boitani and R. A. Powell.) pp. 47–69. (Oxford University Press: New York.)). , .
| 23159126PubMed |
Kelly, M. J., Noss, A. J., Di Bitetti, M. S., Maffei, L., Arispe, R. L., Paviolo, A., De Angelo, C., and Di Blanco, Y. (2008). Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. Journal of Mammalogy 89, 408–418.
| Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize.Crossref | GoogleScholarGoogle Scholar |
Laundré, J., and Clark, T. W. (2003). Managing puma hunting in the western United States: through a metapopulation approach. Animal Conservation 6, 159–170.
| Managing puma hunting in the western United States: through a metapopulation approach.Crossref | GoogleScholarGoogle Scholar |
Logan, K., and Sweanor, L. L. (2001). ‘Desert Puma: Evolutionary Ecology and Conservation of an Enduring Carnivore.’ (Island Press: Washington, DC.)
Maletzke, B. T., Wielgus, R., Koehler, G. M., Swanson, M., Cooley, H., and Alldredge, J. R. (2014). Effects of hunting on cougar spatial organization. Ecology and Evolution 4, 2178–2185.
| 25360259PubMed |
McClintock, B. T., and White, G. C. (2012). From NOREMARK to MARK: software for estimating demographic parameters using mark–resight methodology. Journal für Ornithologie 152, 641–650.
| From NOREMARK to MARK: software for estimating demographic parameters using mark–resight methodology.Crossref | GoogleScholarGoogle Scholar |
McClintock, B. T., White, G. C., Antolin, M. F., and Tripp, D. W. (2009). Estimating abundance using mark–resight when sampling is with replacement or the number of marked individuals is unknown. Biometrics 65, 237–246.
| Estimating abundance using mark–resight when sampling is with replacement or the number of marked individuals is unknown.Crossref | GoogleScholarGoogle Scholar | 18479484PubMed |
Mills, S. L. (2013). ‘Conservation of Wildlife Ppopulations: Demography, Genetics, and Management.’ 2nd edn. (Wiley-Blackwell: Hoboken, NJ.)
Negrões, N., Sarmento, P., Cruz, J., Eira, C., Revilla, E., Fonseca, C., Sollmann, R., Torres, N. M., Furtado, M. M., Jacomo, A. T. A., and Silveira, L. (2010). Use of camera-trapping to estimate puma density and influencing factors in central Brazil. The Journal of Wildlife Management 74, 1195–1203.
| Use of camera-trapping to estimate puma density and influencing factors in central Brazil.Crossref | GoogleScholarGoogle Scholar |
Nichols, J. D., and Karanth, K. U. (2002). Statistical concepts: estimating absolute densities of tigers using capture-recapture sampling. In ‘Monitoring Tigers and their Prey: a Manual for Researchers, Managers and Conservationst in Tropical Asia’. (Eds K. U. Karanth and J. D. Nichols.) pp. 121–137. (Center for Wildlife Studies: Bangalore, India.)
Nielsen, C., Thompson, D., Kelly, M., and Lopez-Gonzalez, C. A. (2016). Puma concolor. In ‘The IUCN Red List of Threatened Species 2016’. e.T18868A97216466. Available at http://www.iucnredlist.org/details/18868/0. [Verified 28 July 2016]
Nouvellet, P., Rasmussen, G. S. A., MacDonald, D. W., and Courchamp, F. (2012). Noisy clocks and silent sunrises: measurement methods of daily activity pattern. Journal of Zoology 286, 179–184.
| Noisy clocks and silent sunrises: measurement methods of daily activity pattern.Crossref | GoogleScholarGoogle Scholar |
O’Brien, T. G. (2011). Abundance, density and relative abundance: a conceptual framework. In ‘Camera Traps in Animal Ecology’. (Eds A. F. O’Connell, J. D. Nichols and K. U. Karanth.) pp. 71–96. (Springer: New York.)
Ordiz, A., Støen, O.-G., Sæbø, S., Kindberg, J., Delibes, M., and Swenson, J. E. (2012). Do bears know they are being hunted? Biological Conservation 152, 21–28.
| Do bears know they are being hunted?Crossref | GoogleScholarGoogle Scholar |
Otis, D. L., Burnham, K., White, G. C., and Anderson, D. (1978). Statistical inference from capture data on closed animal populations. Wildlife Monographs 62, 1–135.
Palomares, F., and Caro, T. M. (1999). Interspecific killing among mammalian carnivores. American Naturalist 153, 492–508.
| Interspecific killing among mammalian carnivores.Crossref | GoogleScholarGoogle Scholar |
Paviolo, A., Di Blanco, Y. E., De Angelo, C. D., and Di Bitetti, M. S. (2009). Protection affects the abundance and activity patterns of pumas in the Atlantic Forest. Journal of Mammalogy 90, 926–934.
| Protection affects the abundance and activity patterns of pumas in the Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |
Payton, M. E., Greenstone, M. H., and Schenker, N. (2003). Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? Journal of Insect S–cience 3, 1–6.
| Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance?Crossref | GoogleScholarGoogle Scholar |
Pierce, B. M. (2000). Selection of mule deer by mountain lions and coyotes: effects of hunting style, body size, and reproductive status. Journal of Mammalogy 81, 462–472.
| Selection of mule deer by mountain lions and coyotes: effects of hunting style, body size, and reproductive status.Crossref | GoogleScholarGoogle Scholar |
Plummer, M., Best, N., Cowles, K., and Vines, K. (2006). CODA: convergence diagnosis and output analysis for MCMC. R News 6, 7–11.
Quiroga, V. a., Noss, A. J., Paviolo, A., Boaglio, G. I., and Di Bitetti, M. S. (2016). Puma density, habitat use and conflict with humans in the Argentine Chaco. Journal for Nature Conservation 31, 9–15.
| Puma density, habitat use and conflict with humans in the Argentine Chaco.Crossref | GoogleScholarGoogle Scholar |
R Development Core Team (2013). ‘R: a Language and Environment for Statistical Computing.’ Available at www.R-project.org [Verified 28 August 2016]
Ray, J., Redford, K., Steneck, R., and Berger, J. (2005). ‘Large Carnivores and the Conservation of Biodiversity.’ (Island Press: Washington, DC.)
Rich, L. N., Kelly, M. J., Sollmann, R., Noss, A. J., Maffei, L., Arispe, R. L., Paviolo, A., De Angelo, C. D., Di Blanco, Y. E., and Di Bitetti, M. S. (2014). Comparing capture–recapture, mark–resight, and spatial mark–resight models for estimating puma densities via camera traps. Journal of Mammalogy 95, 382–391.
| Comparing capture–recapture, mark–resight, and spatial mark–resight models for estimating puma densities via camera traps.Crossref | GoogleScholarGoogle Scholar |
Ridout, M. S., and Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological & Environmental Statistics 14, 322–337.
| Estimating overlap of daily activity patterns from camera trap data.Crossref | GoogleScholarGoogle Scholar |
Robinson, H. S., Wielgus, R. B., Cooley, H. S., and Cooley, S. W. (2008). Sink populations in carnivore management: cougar demography and immigration in a hunted population. Ecological Applications 18, 1028–1037.
| Sink populations in carnivore management: cougar demography and immigration in a hunted population.Crossref | GoogleScholarGoogle Scholar | 18536260PubMed |
Robinson, H. S., Desimone, R., Hartway, C., Gude, J. a., Thompson, M. J., Mitchell, M. S., and Hebblewhite, M. (2014). A test of the compensatory mortality hypothesis in mountain lions: a management experiment in west–central Montana. The Journal of Wildlife Management 78, 791–807.
| A test of the compensatory mortality hypothesis in mountain lions: a management experiment in west–central Montana.Crossref | GoogleScholarGoogle Scholar |
Royle, J. A., Nichols, J. D., Karanth, K. U., and Gopalaswamy, A. M. (2009). A hierarchical model for estimating density in camera trap studies. Journal of Applied Ecology 46, 118–127.
| A hierarchical model for estimating density in camera trap studies.Crossref | GoogleScholarGoogle Scholar |
Royle, J. A., Chandler, R. B., Sollmann, R., and Gardner, B. (2014). ‘Spatial Capture–recapture.’ (Academic Press: Waltham, MA.)
Silveira, L., Jacomo, A. T. A., and Diniz-Filho, J. A. F. (2003). Camera trap, line transect census and track surveys: a comparative evaluation. Biological Conservation 114, 351–355.
| Camera trap, line transect census and track surveys: a comparative evaluation.Crossref | GoogleScholarGoogle Scholar |
Sollmann, R., Gardner, B., Chandler, R. B., Shindle, D. B., Onorato, D. P., Royle, J. A., and O’Connell, A. F. (2013a). Using multiple data sources provides density estimates for endangered Florida panther. Journal of Applied Ecology 50, 961–968.
| Using multiple data sources provides density estimates for endangered Florida panther.Crossref | GoogleScholarGoogle Scholar |
Sollmann, R., Gardner, B., Parsons, A. W., Stocking, J. J., McClintock, B. T., Simons, T. R., Pollock, K. H., and O’Connell, A. F. (2013b). A spatial mark–resight model augmented with telemetry data. Ecology 94, 553–559.
| A spatial mark–resight model augmented with telemetry data.Crossref | GoogleScholarGoogle Scholar | 23687880PubMed |
Soria-Díaz, L., Monroy-Vilchis, O., Rodríguez-Soto, C., Zarco-González, M., and Urios, V. (2010). Variation of abundance and density of Puma concolor in zones of high and low concentration of camera traps in Central Mexico. Animal Biology 60, 361–371.
Stoner, D. C., Wolfe, M. L., and Choate, D. M. (2006). Cougar exploitation levels in Utah: implications for demographic structure, population recovery, and metapopulation dynamics. The Journal of Wildlife Management 70, 1588–1600.
| Cougar exploitation levels in Utah: implications for demographic structure, population recovery, and metapopulation dynamics.Crossref | GoogleScholarGoogle Scholar |
Sunquist, M., and Sunquist, F. (2002). ‘Wild Cats of the World.’ (The University of Chicago Press: Chicago, IL.)
Treves, A. (2009). Hunting for large carnivore conservation. Journal of Applied Ecology 46, 1350–1356.
| Hunting for large carnivore conservation.Crossref | GoogleScholarGoogle Scholar |
Treves, A., and Karanth, K. U. (2003). Human–carnivore conflict and perspectives on carnivore management worldwide. Conservation Biology 17, 1491–1499.
| Human–carnivore conflict and perspectives on carnivore management worldwide.Crossref | GoogleScholarGoogle Scholar |
Van Schaik, C. P., and Griffiths, M. (1996). Activity periods of Indonesian rain forest mammals. Biotropica 28, 105–112.
| Activity periods of Indonesian rain forest mammals.Crossref | GoogleScholarGoogle Scholar |
Walker, S., and Novaro, A. (2010). The world’s southernmost pumas in Patagonia and the southern Andes. In ‘Cougar: Ecology and Conservation’. (Eds M. Hornocker and S. Negri.) pp. 91–99. (University of Chicago Press: Chicago, IL.)
White, G. C., and Shenk, T. M. (2001). Population estimation with radio-marked individuals. In ‘Radio Tracking and Animal Populations’. (Eds J. Millspaugh and J. M. Marzluff.) pp. 329–350. (Academic Press: San Diego, CA.)
Wilson, K. R., and Anderson, D. R. (1985). Evaluation of a nested grid approach for estimating density. The Journal of Wildlife Management 49, 675–678.
| Evaluation of a nested grid approach for estimating density.Crossref | GoogleScholarGoogle Scholar |
Wilson, D. E., and Mittermeier, R. A. (2009). ‘Handbook of the Mammals of the World. Vol. 1. Carnivores.’ (Lynx Edicions: Barcelona, Spain.)
Woodroffe, R., and Ginsberg, J. (1998). Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128.
| Edge effects and the extinction of populations inside protected areas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXkt1Glu7g%3D&md5=39f57f305b5f16d195374ad2df4f91f1CAS | 9641920PubMed |
Zanón Martínez, J. I., Travaini, A., Zapata, S., Procopio, D., and Santillán, M. Á. (2012). The ecological role of native and introduced species in the diet of the puma Puma concolor in southern Patagonia. Oryx 46, 106–111.
| The ecological role of native and introduced species in the diet of the puma Puma concolor in southern Patagonia.Crossref | GoogleScholarGoogle Scholar |
Zanón Martínez, J. I., Santillán, M. Á., Sarasola, J. H., and Travaini, A. (2016). A native top predator maintained by exotic preys inside a protected area: the puma and the introduced ungulates. Journal of Arid Environments 134, 17–20.
| A native top predator maintained by exotic preys inside a protected area: the puma and the introduced ungulates.Crossref | GoogleScholarGoogle Scholar |