Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Matrix and habitat quality in a montane cloud-forest landscape: amphibians in coffee plantations in central Veracruz, Mexico

Rene Murrieta-Galindo A D , Fabiola López-Barrera B , Alberto González-Romero A and Gabriela Parra-Olea C
+ Author Affiliations
- Author Affiliations

A Red de Biología y Conservación de Vertebrados. Instituto de Ecología, Carretera Antigua a Coatepec 351, El Haya, AP 63, Xalapa 91070, Veracruz, México.

B Red de Ecología Funcional. Instituto de Ecología, Carretera Antigua a Coatepec 351, El Haya, AP 63, Xalapa 91070, Veracruz, México.

C Departamento de Zoología, Instituto de Biología, UNAM, Tercer circuito s/n, Ciudad Universitaria, Copilco, Coyoacán. A.P. 70-163 México, D.F. CP 04510.

D Corresponding author. Email: murrieta13@gmail.com

Wildlife Research 40(1) 25-35 https://doi.org/10.1071/WR12076
Submitted: 18 April 2012  Accepted: 14 December 2012   Published: 29 January 2013

Abstract

Context: The processes of fragmentation, habitat loss, degradation and their combined effects are formidable threats to amphibian populations.

Aims: We evaluate the effect of three land use-type variables and nine landscape matrix quality factors on amphibian presence in four coffee agro-ecosystems and two cloud-forest fragments in central Veracruz, Mexico.

Methods: Each site was thoroughly searched using the visual-encounter survey technique along different trails in the most feasible microhabitats for detecting amphibians during four rainy seasons (2005, 2006, 2008 and 2009). Centred on the location where each amphibian species was first recorded, we established what we refer to as a buffer area within a radius of 1.5 km. A Co-Inertia mathematical model was used to determine which of the explanatory variables contributed to maintaining amphibian diversity. The landscape variables were landscape-quality index, open areas, canopy cover (low, intermediate, dense) at the matrix level, river, road and human population density and site size. Local variables were elevation, plant-structure and biological-impact indices.

Key results: During the study we recorded 1078 amphibians belonging to 26 species, 17 genera and 10 families. The variables explaining the composition of amphibian diversity were river and human population density, low canopy cover at the matrix level, elevation, site size and plant-structure index. Amphibian diversity increased as the structural complexity of the habitat increased, and the former was positively correlated with fragment size.

Conclusion: The present study indicated that coffee agro-ecosystems and the cloud-forest fragments in the region form a gradient in habitat quality and landscape variables that exert a differential influence on amphibian assemblages, and that each species responds uniquely to different variables.

Implications: Coffee agro-ecosystems and forest fragments cannot be seen as homogenous patches with a certain habitat quality, separate from the landscape matrix in which they are immersed. Stakeholders are not advised to rely on a single strategy to conserve the amphibian community, but rather should aim to maintain a heterogeneous landscape with forest fragments and coffee agro-ecosystems that have a complex vertical plant structure at the habitat level, especially in highly river-dense landscapes.


References

Adams, M. J., and Bury, R. B. (2002). The endemic headwater stream amphibians of the American Northwest: associations with environmental gradients in a large forested preserve. Global Ecology and Biogeography 11, 169–178.
The endemic headwater stream amphibians of the American Northwest: associations with environmental gradients in a large forested preserve.Crossref | GoogleScholarGoogle Scholar |

Aldrich, M., Billington, C., Edwards, M., and Laidlaw, R. (1997). Tropical montane cloud forests: an urgent priority for conservation. WCMC Biodiversity Bulletin 2, 1–14.

Arellano, L., Favila, M. E., and Huerta, C. (2005). Diversity of dung and carrion beetles in a disturbed Mexican tropical montane cloud forest and on shade coffee plantations. Biodiversity and Conservation 14, 601–615.
Diversity of dung and carrion beetles in a disturbed Mexican tropical montane cloud forest and on shade coffee plantations.Crossref | GoogleScholarGoogle Scholar |

Atauri, J. A., and de Lucio, J. V. (2001). The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes. Landscape Ecology 16, 147–159.
The role of landscape structure in species richness distribution of birds, amphibians, reptiles and lepidopterans in Mediterranean landscapes.Crossref | GoogleScholarGoogle Scholar |

Babbitt, K. J., Baber, M. J., and Brandt, L. A. (2006). The effect of woodland proximity and wetland characteristics on larval anuran assemblages in an agricultural landscape. Canadian Journal of Zoology-Revue Canadienne de Zoologie 84, 510–519.
The effect of woodland proximity and wetland characteristics on larval anuran assemblages in an agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

Baillie, J. E. M., Hilton-Taylor, C., and Stuart, S. N. (2004). ‘IUCN Red List of Threatened Species. A Global Species Assessment.’ (IUCN: Gland, Switzerland.)

Baker, J. M. R., and Halliday, T. R. (1999). Amphibian colonization of new ponds in an agricultural landscape. The Herpetological Journal 9, 55–63.

Baker, J., Beebee, T., Buckley, J., Gent, T., and Orchard, D. (2011). ‘Amphibian Habitat Management Handbook.’ (Amphibian and Reptile Conservation: Bournemouth, UK.)

Barrett, K., and Guyer, C. (2008). Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA. Biological Conservation 141, 2290–2300.
Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA.Crossref | GoogleScholarGoogle Scholar |

Bosch, J., and Martinez-Solano, I. (2003). Factors influencing occupancy of breeding ponds in a Montane amphibian assemblage. Journal of Herpetology 37, 410–413.
Factors influencing occupancy of breeding ponds in a Montane amphibian assemblage.Crossref | GoogleScholarGoogle Scholar |

Browne, C. L., Paszkowski, C. A., Foote, A. L., Moenting, A., and Boss, S. M. (2009). The relationship of amphibian abundance to habitat features across spatial scales in the boreal Plains. Ecoscience 16, 209–223.
The relationship of amphibian abundance to habitat features across spatial scales in the boreal Plains.Crossref | GoogleScholarGoogle Scholar |

Bury, R. B., and Pearl, C. A. (1999). Klamath–Siskiyou herpetofauna: biogeographic patterns and conservation strategies. Natural Areas Journal 19, 341–350.

Byg, A., Vormisto, J., and Balslev, H. (2007). Influence of diversity and road access on palm extraction at landscape scale in SE Ecuador. Biodiversity and Conservation 16, 631–642.
Influence of diversity and road access on palm extraction at landscape scale in SE Ecuador.Crossref | GoogleScholarGoogle Scholar |

Carlson, A., and Hartman, G. (2001). Tropical forest fragmentation and nest predation – an experimental study in an eastern Arc montane forest, Tanzania. Biodiversity and Conservation 10, 1077–1085.
Tropical forest fragmentation and nest predation – an experimental study in an eastern Arc montane forest, Tanzania.Crossref | GoogleScholarGoogle Scholar |

Challenger, A., and Dirzo, R. (2009). Factores de cambio y estado de la biodiversidad. In ‘Capital Natural de México. Vol. II: Estado de Conservación y Tendencias de Cambio’. (Eds J. Sarukhán and J. Soberón.) pp. 37–73. (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Distrito Federal, México.)

Chen, C. Y., Hathaway, K. M., Thompson, D. G., and Folt, C. L. (2008). Multiple stressor effects of herbicide, pH, and food on wetland zooplankton and a larval amphibian. Ecotoxicology and Environmental Safety 71, 209–218.
Multiple stressor effects of herbicide, pH, and food on wetland zooplankton and a larval amphibian.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpsVOjtrc%3D&md5=98c068efe5c81f3c296113d3894733d6CAS |

Clevenger, T., and Huijser, M. P. (2011). ‘Handbook for Design and Evaluation of Wildlife Crossing Structures in North America.’ (Federal Highway Administration, Planning, Environment and Reality: Washington, DC.)

Clevenger, A. P., McIvor, M., McIvor, D., Chruszcz, B., and Gunson, K. (2001). Tiger salamander, Ambystoma tigrinum, movements and mortality on the trans-Canada highway in southwestern Alberta. Canadian Field Naturalist 115, 199–204.

CONABIO (2010). ‘Norma Oficial Mexicana NOM-059-SEMARNAT-2001, Protección Ambiental-Especies Nativas de México de Flora y Fauna Silvestres – Categorías de Riesgo y Especificaciones para su Inclusión, Exclusión o Cambio – Lista de Especies en Riesgo.’ (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Distrito Federal, México.)

Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science 199, 1302–1310.
Diversity in tropical rain forests and coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvmtVCnuw%3D%3D&md5=76acb42c4490268db855406ba93ea3e9CAS |

Crump, M. L., and Scott, N. J., Jr (1994). Visual encounter surveys. In ‘Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians’. (Eds W. R. Heyer, M. A. Donnelley, R. W. McDiarmid, L. C. Hayek and M. S. Foster.) pp. 84–91. (Smithsonian Institution Press: Washington, DC.)

da Silva, F. R., Gibbs, J. P., and Rossa-Feres, D. C. (2011). Breeding habitat and landscape correlates of frog diversity and abundance in a tropical agricultural landscape. Wetlands 31, 1079–1087.
Breeding habitat and landscape correlates of frog diversity and abundance in a tropical agricultural landscape.Crossref | GoogleScholarGoogle Scholar |

Denoël, M., and Ficetola, G. F. (2007). Landscape-level thresholds and newt conservation. Ecological Applications 17, 302–309.
Landscape-level thresholds and newt conservation.Crossref | GoogleScholarGoogle Scholar |

Dray, S., and Dufour, A. B. (2007). The ade4 package: implementing the duality diagram for ecologists. Journal of Statistical Software 22, 6.

Dray, S., Chessel, D., and Thioulouse, J. (2003). Co-inertia analysis and the linking of ecological data tables. Ecology 84, 3078–3089.
Co-inertia analysis and the linking of ecological data tables.Crossref | GoogleScholarGoogle Scholar |

ESRI (1996). ‘ArcView GIS v. 3.2.’ (Environmental System Research Institute Corporation: Redlands, CA.)

Ficetola, G. F., Padoa-Schioppa, E., and De Bernardi, F. (2009). Influence of landscape elements in riparian buffers on the conservation of semiaquatic amphibians. Conservation Biology 23, 114–123.
Influence of landscape elements in riparian buffers on the conservation of semiaquatic amphibians.Crossref | GoogleScholarGoogle Scholar |

Forman, R. T. T. (1995). Some general principles of landscape and regional ecology. Landscape Ecology 10, 133–142.
Some general principles of landscape and regional ecology.Crossref | GoogleScholarGoogle Scholar |

Frías-Álvarez, P., Vredenburg, V. T., Familiar-Lopez, M., Longcore, J. E., González-Bernal, E., Santos-Barrera, G., Zambrano, L., and Parra-Olea, G. (2008). Chytridiomycosis survey in wild and captive Mexican amphibians. EcoHealth 5, 18–26.
Chytridiomycosis survey in wild and captive Mexican amphibians.Crossref | GoogleScholarGoogle Scholar |

Garcia-Gonzalez, C., Campo, D., Pola, I. G., and Garcia-Vazquez, E. (2012). Rural road networks as barriers to gene flow for amphibians: species-dependent mitigation by traffic calming. Landscape and Urban Planning 104, 171–180.
Rural road networks as barriers to gene flow for amphibians: species-dependent mitigation by traffic calming.Crossref | GoogleScholarGoogle Scholar |

González-Romero, A., and Murrieta-Galindo, R. (2008). Capítulo 10: anfibios y reptiles. In ‘Agroecosistemas Cafetaleros de Veracruz’. (Eds R. H. Manson, K. Mehltreter, S. Gallina and V. H. Ortiz.) pp. 135–147. (Instituto de Ecología A. C. and Instituto Nacional de Ecología: Xalapa, Veracruz, México.)

Halffter, G. (1998). A strategy for measuring landscape biodiversity. Biology International 36, 3–17.

Halladay, P., and Gilmour, D. A. (1995). ‘Conserving Biodiversity Outside Protected Areas: the Role of Traditional Agro-ecosystems.’ (IUCN – The World Conservation Union: Gland, Switzerland.)

Hartel, T., Nemes, S., Demeter, L., and Ollerer, K. (2008). Pond and landscape characteristics – which is more important for common toads (Bufo bufo)? A case study from central Romania. Applied Herpetology 5, 1–12.
Pond and landscape characteristics – which is more important for common toads (Bufo bufo)? A case study from central Romania.Crossref | GoogleScholarGoogle Scholar |

Hartel, T., Schweiger, O., Öllerer, K., Cogalniceanu, D., and Arntzen, J. W. (2010). Amphibian distribution in a traditionally managed rural landscape of Eastern Europe: probing the effect of landscape composition. Biological Conservation 143, 1118–1124.
Amphibian distribution in a traditionally managed rural landscape of Eastern Europe: probing the effect of landscape composition.Crossref | GoogleScholarGoogle Scholar |

Hernández-Martínez, G., Manson, R. H., and Hernández, A. C. (2009). Quantitative classification of coffee agroecosystems spanning a range of production intensities in central Veracruz, Mexico. Agriculture, Ecosystems & Environment 134, 89–98.
Quantitative classification of coffee agroecosystems spanning a range of production intensities in central Veracruz, Mexico.Crossref | GoogleScholarGoogle Scholar |

Hobbs, R. (1997). Future landscapes and the future of landscape ecology. Landscape and Urban Planning 37, 1–9.
Future landscapes and the future of landscape ecology.Crossref | GoogleScholarGoogle Scholar |

Hooper, D. U., Chapin, F. S., Ewel, J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J. H., Lodge, D. M., Loreau, M., Naeem, S., Schmid, B., Setälä, H., Symstad, A. J., Vandermeer, J., and Wardle, D. A. (2005). Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75, 3–35.
Effects of biodiversity on ecosystem functioning: a consensus of current knowledge.Crossref | GoogleScholarGoogle Scholar |

Jose, S. (2009). Agroforestry for ecosystem services and environmental benefits: an overview. Agroforestry Systems 76, 1–10.
Agroforestry for ecosystem services and environmental benefits: an overview.Crossref | GoogleScholarGoogle Scholar |

Krauss, J., Steffan Dewenter, I., and Tscharntke, T. (2003). How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies? Journal of Biogeography 30, 889–900.
How does landscape context contribute to effects of habitat fragmentation on diversity and population density of butterflies?Crossref | GoogleScholarGoogle Scholar |

Legendre, P., and Legendre, L. (Eds) (1998). ‘Numerical Ecology.’ (Elsevier Science: Wallingford, UK.)

Leyequién, E., De Boer, W. F., and Toledo, V. M. (2010). Bird community composition in a shaded coffee agro-ecological matrix in Puebla, Mexico: the effects of landscape heterogeneity at multiple spatial scales. Biotropica 42, 236–245.
Bird community composition in a shaded coffee agro-ecological matrix in Puebla, Mexico: the effects of landscape heterogeneity at multiple spatial scales.Crossref | GoogleScholarGoogle Scholar |

Lips, K. R., Mendelson, J. R., Munoz-Alonso, A., Canseco-Marquez, L., and Mulcahy, D. G. (2004). Amphibian population declines in montane southern Mexico: resurveys of historical localities. Biological Conservation 119, 555–564.
Amphibian population declines in montane southern Mexico: resurveys of historical localities.Crossref | GoogleScholarGoogle Scholar |

López-Barrera, F., and Landgrave, R. (2008). Capítulo 19: variación de la biodiversidad a nivel paisaje. In ‘Agroecosistemas Cafetaleros de Veracruz’. (Eds R. H. Manson, K. Mehltreter, S. Gallina and V. H. Ortiz.) pp. 259–269. (Instituto de Ecología A. C. and Instituto Nacional de Ecología: Xalapa, Veracruz, México.)

Macip-Ríos, R., and Casas-Andreu, G. (2008). Los cafetales en México y su importancia para la conservación de los anfibios y reptiles. Acta Zoologica Mexicana 24, 143–159.

Manson, R. H., Mehltreter, K., Gallina, S., and Ortiz, V. H. (Eds) (2008). ‘Agroecosistemas Cafetaleros de Veracruz.’ (Instituto de Ecología A. C. and Instituto Nacional de Ecología: Distrito Federal, México.)

Martin, K. J., and McComb, B. C. (2003). Amphibian habitat associations at patch and landscape scales in the central Oregon Coast Range. The Journal of Wildlife Management 67, 672–683.
Amphibian habitat associations at patch and landscape scales in the central Oregon Coast Range.Crossref | GoogleScholarGoogle Scholar |

Mehltreter, M., and González-Gálvez, J. L. (2006). ‘Base de Datos del Proyecto BIOCAFE. II. Versión 2.0.’ (Instituto de Ecología A. C.: Xalapa, Veracruz, México.)

Michon, G., and de Foresta, H. (1995). The Indonesian agroforest model. Forest resource management and biodiversity conservation. In ‘Conserving Biodiversity Outside Protected Areas. the Role of Traditional Agro-ecosystems’. (Eds P. Halladay and D. A. Gilmour.) pp. 90–106. (International Union for Conservation of Nature – The World Conservation Union: Gland, Switzerland.)

Moguel, P., and Toledo, V. M. (2004). Conservar produciendo: biodiversidad, café orgánico y jardines productivos. Biodiversitas. 57, 2–7.

Naeem, S. (2002). Ecosystem consequences of biodiversity loss: the evolution of a paradigm. Ecology 83, 1537–1552.
Ecosystem consequences of biodiversity loss: the evolution of a paradigm.Crossref | GoogleScholarGoogle Scholar |

Nicholls, A. O., and Margules, C. R. (1991). The design of studies to demonstrate the biological importance of corridors. In ‘Nature Conservation 2: the Role of Corridors’. (Eds D. A. Saunders and R. J. Hobbs.) pp. 49–61. (Surrey Beatty: Sydney.)

Noss, R. F. (1990). Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology 4, 355–364.
Indicators for monitoring biodiversity: a hierarchical approach.Crossref | GoogleScholarGoogle Scholar |

Ochoa-Ochoa, L. M., and Flores-Villela, O. (2006). ‘Áreas de Diversidad y Endemismo de la Herpetofauna Mexicana.’ (Universidad Nacional Autónoma de México: Distrito Federal, México.)

Ochoa-Ochoa, L., Urbina-Cardona, J. N., Vázquez, L. B., Flores-Villela, O., and Bezaury-Creel, J. (2009). The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians. PLoS ONE 4, e6878.
The effects of governmental protected areas and social initiatives for land protection on the conservation of Mexican amphibians.Crossref | GoogleScholarGoogle Scholar |

Parra-Olea, G., Rovito, S. M., Márquez-Valdelamar, L., Cruz, G., Murrieta-Galindo, R., and Wake, D. (2010). A new species of Pseudoeurycea from the cloud forest in Veracruz, Mexico. Zootaxa 2725, 57–68.

Perfecto, I., and Armbrecht, I. (2003). ‘The Coffee Agrosystem in the Neotropics: Combining Ecological and Economic Goals.’ (Tropical Agrosystems. CRC Press: Washington, DC.)

Pineda, E., and Halffter, G. (2004). Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico. Biological Conservation 117, 499–508.
Species diversity and habitat fragmentation: frogs in a tropical montane landscape in Mexico.Crossref | GoogleScholarGoogle Scholar |

Pineda, E., Moreno, C., Escobar, F., and Halffter, G. (2005). Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico. Conservation Biology 19, 400–410.
Frog, bat, and dung beetle diversity in the cloud forest and coffee agroecosystems of Veracruz, Mexico.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2011). R: a Language and Environment for Statistical Computing. Version 2.13.1.’ (R Foundation for Statistical Computing: Vienna.)

Relyea, R. A. (2005). The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities. Ecological Applications 15, 618–627.
The impact of insecticides and herbicides on the biodiversity and productivity of aquatic communities.Crossref | GoogleScholarGoogle Scholar |

Rovito, S. M., Parra-Olea, G., Vasquez-Almazan, C. R., Papenfuss, T. J., and Wake, D. B. (2009). Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis. Proceedings of the National Academy of Sciences, USA 106, 3231–3236.
Dramatic declines in neotropical salamander populations are an important part of the global amphibian crisis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXivF2js74%3D&md5=6156eae67fe10741e64d08da4cb5d620CAS |

Santos-Barrera, G., and Urbina-Cardona, N. (2011). The role of the matrix-edge dynamics of amphibian conservation in tropical montane fragmented landscapes. Revista Mexicana De Biodiversidad 82, 679–687.

Saunders, D. A., Hobbs, R. J., and Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: a review. Conservation Biology 5, 18–32.
Biological consequences of ecosystem fragmentation: a review.Crossref | GoogleScholarGoogle Scholar |

Scribner, K. T., Arntzen, J. W., Cruddace, N., Oldham, R. S., and Burke, T. (2001). Environmental correlates of toad abundance and population genetic diversity. Biological Conservation 98, 201–210.
Environmental correlates of toad abundance and population genetic diversity.Crossref | GoogleScholarGoogle Scholar |

Semlitsch, R. D. (2003). ‘Amphibian Conservation.’ (Smithsonian Books: Washington, DC.)

Semlitsch, R. D., Conner, C. A., Hocking, D. J., Rittenhouse, T. A. G., and Harper, E. B. (2008). Effects of timber harvesting on pond-breeding amphibian persistence: testing the evacuation hypothesis. Ecological Applications 18, 283–289.
Effects of timber harvesting on pond-breeding amphibian persistence: testing the evacuation hypothesis.Crossref | GoogleScholarGoogle Scholar |

Sigala-Rodríguez, J. J., and Greene, H. W. (2009). Landscape change and conservation priorities: Mexican herpetofaunal perspectives at local and regional scales. Revista Mexicana de Biodiversidad 80, 240.

Smit, G. F. J., Brandjes, J., and Veenbaas, G. (2007). Amphibians crossing under motorways: solutions for migration or dispersion? In ‘Influence of Transport Infrastructure on Nature’. (Ed. B. Jackowiak) pp. 219–224. (General Directorate of National Roads and Motorways: Warzawa-Ponzan, Lublin, Poland).

Soto, E. M., and Gómez, C. (1990). ‘Atlas Climático del Municipio de Xalapa.’ (Instituto de Ecología, A. C.: Xalapa, Veracruz, México.)

Soulé, M. E., and Gilpin, M. E. (1991). The theory of wildlife corridor capability. Nature Conservation 2, 3–8.

Tejeda-Cruz, C., Silva-Rivera, E., Barton, J. R., and Sutherland, W. J. (2010). Why shade coffee does not guarantee biodiversity conservation. Ecology and Society 15, 13.

Toledo-Aceves, T., Meave, J. A., Gonzalez-Espinosa, M., and Ramirez-Marcial, N. (2011). Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico. Journal of Environmental Management 92, 974–981.
Tropical montane cloud forests: current threats and opportunities for their conservation and sustainable management in Mexico.Crossref | GoogleScholarGoogle Scholar |

Van der Meijden, A., Vre Denburg, V., Sopory, A., Petirs, B., Tiwari, R., Wake, D.B. (2001). AmphibiaWeb: an information system for amphibian conservation biology. Annual Meeting of the Society for Integrative and Comparative Biology, Anaheim, CA. American Zoologist 41, 1653.

Vandermeer, J., and Perfecto, I. (2007). The agricultural matrix and a future paradigm for conservation. Conservation Biology 21, 274–277.
The agricultural matrix and a future paradigm for conservation.Crossref | GoogleScholarGoogle Scholar |

Wake, D. B., and Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, USA 105, 11466–11473.
Are we in the midst of the sixth mass extinction? A view from the world of amphibians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVSjtr7J&md5=9956c6fc02edeca3c59f041e7bc4ddd1CAS |

Warnes, M. G. R. (2009). ‘Package ‘gmodels’.’ (R Foundation for Statistical Computing: Vienna.)

Weibull, A. C., Östman, Ö., and Granqvist, Å. (2003). Species richness in agroecosystems: the effect of landscape, habitat and farm management. Biodiversity and Conservation 12, 1335–1355.
Species richness in agroecosystems: the effect of landscape, habitat and farm management.Crossref | GoogleScholarGoogle Scholar |

Whittaker, R. J., Willis, K. J., and Field, R. (2001). Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28, 453–470.
Scale and species richness: towards a general, hierarchical theory of species diversity.Crossref | GoogleScholarGoogle Scholar |

Williams-Linera, G. (2007). ‘El Bosque de Niebla del Centro de Veracruz: Ecología, Historia y Destino en Tiempos de Fragmentación y Cambio Climático.’ (CONABIO – Instituto de Ecología, A. C.: Xalapa, Veracruz, México.)

Williams-Linera, G., and López-Gómez, A. (2008). Capítulo 4: estructura y diversidad de la vegetación leñosa. In ‘Agroecosistemas Cafetaleros de Veracruz’. (Eds R. H. Manson, K Mehltreter, S. Gallina and V. H. Ortiz.) pp. 55–68. (Instituto de Ecología A. C. and Instituto Nacional de Ecología: Xalapa, Veracruz. México.)

Zar, J. H. (1999). ‘Biostatistical Analysis.’ (Prentice Hall: Upper Saddle River, NJ.)