Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Habitat use by corn mice (Calomys musculinus) in cropfield borders of agricultural ecosystems in Argentina

Ivana Simone A C , Cecilia Provensal A and Jaime Polop A
+ Author Affiliations
- Author Affiliations

A Departamento de Ciencias Naturales, Facultad de Ciencias Exactas, Físico-Químicas y Naturales,

B Universidad Nacional de Río Cuarto, Ruta Nac. 36- Km 601. CP X5804BYA, Agencia Postal No. 3, Río Cuarto, Córdoba, Argentina.

C Corresponding author. Email: isimone@exa.unrc.edu.ar, ivisimone@yahoo.com.ar

Wildlife Research 39(2) 112-122 https://doi.org/10.1071/WR11065
Submitted: 2 April 2011  Accepted: 14 December 2011   Published: 23 March 2012

Abstract

Context: Calomys musculinus (Cricetidae, Sigmodontinae) is a small rodent species widely distributed in Argentina and particularly abundant in agroecosystems of the Pampean region, where it is known to select border habitats over cropfields.

Aims: The aim of the present research was to assess habitat use by C. musculinus in cropfield borders. Assuming that the number of rodent captures in each border reflects the intensity of use, we intended to identify the habitat characteristics that would account for abundance differences among borders.

Methods: Seasonal trapping sessions were carried out in borders of the rural zone of Chucul, Córdoba. Environmental variables were registered from both field surveys and remote-sensing imagery. Generalised linear models were used to identify the habitat variables associated with C. musculinus habitat use.

Key results: General fit of the models was fairly good; spring, summer and autumn models explained more than 55% of the variation in C. musculinus abundance among borders. Individual plant species were significant predictors of C. musculinus abundance, but they varied with seasons, whereas tree cover and border width were significant predictors in most seasons studied. In general, rodent abundance was positively associated with peanut and maize crops or maize stubbles and negatively related to soybean or its stubbles. In the coldest seasons, rodent abundance increased with increasing land-surface temperature of the border.

Conclusions: Border use by C. musculinus appeared to respond to differences in border quality, which seems to be more affected by those environmental characteristics that entail a reduction of the predatory risk rather than by those that involve food supply. Crop-fields may partially afford C. musculinus food requirements.

Implications: Because C. musculinus is the natural reservoir of a zoonotic agent, the identification of the habitat characteristics affecting rodent population numbers in borders may be of crucial importance for the implementation of ecologically based rodent-management strategies aimed at reducing human–rodent contacts. We suggest that wide borders, particularly those contiguous to maize and peanut cropfields, should be understood as priority sites for the implementation of specific control actions.

Additional keywords: agroecosystem, AHF, habitat selection, linear habitat, GLM, remote sensing.


References

Akçakaya, H. R., Burgman, M., and Ginzburg, L. (1999). ‘Applied Population Ecology: Principles and Computer Exercises using RAMAS EcoLab 2.0.’ 2nd edn. (Sinauer: Sunderland, MA.)

Andreo, V., Provensal, C., Scavuzzo, M., Lamfri, M., and Polop, J. (2009). Environmental factors and population fluctuations of Akodon azarae (Muridae: Sigmodontinae) in central Argentina. Austral Ecology 34, 132–142.
Environmental factors and population fluctuations of Akodon azarae (Muridae: Sigmodontinae) in central Argentina.Crossref | GoogleScholarGoogle Scholar |

Banks, P., Norrdahl, K., and Korpimäki, E. (2000). Nonlinearity in the predation risk of vole mobility. Proceedings. Biological Sciences 267, 1621–1625.
Nonlinearity in the predation risk of vole mobility.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MvhvFOmsA%3D%3D&md5=b07f5792b1ffc98de63a70199afbc626CAS |

Basille, M., Calenge, C., Marboutin, E., Andersen, R., and Gaillard, J. (2008). Assessing habitat selection using multivariate statistics: some refinements of the ecological-niche factor analysis. Ecological Modelling 211, 233–240.

Bellamy, P. E., Shore, R. F., Ardeshir, D., Treweek, J. R., and Sparks, T. H. (2000). Road verges as habitat for small mammals in Britain. Mammal Review 30, 131–139.
Road verges as habitat for small mammals in Britain.Crossref | GoogleScholarGoogle Scholar |

Bellocq, M. I., and Kravetz, F. O. (1994). Feeding strategy and predation of the barn owl (Tyto alba) and the burrowing owl (Speotyto cunicularia) on rodent species, sex, and size, in agroecosystems of central Argentina. Ecología Austral 4, 29–34.

Bianco, C. A., Kraus, T. A., Anderson, D. L., and Cantero, J. J. (1987). Formaciones vegetales del suroeste de la Provincia de Córdoba (República Argentina). Revista UNRC 7, 5–66.

Bolker, B. M., Brooks, M., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., and White, J.-S. S. (2009). Generalized linear mixed models: a practical guide for ecology and evolution. Trends in Ecology & Evolution 24, 127–135.
Generalized linear mixed models: a practical guide for ecology and evolution.Crossref | GoogleScholarGoogle Scholar |

Bright, P. W., and Morris, P. A. (1991). Ranging and nesting behaviour of the dormouse, Muscardinus avellanarius, in diverse low-growing woodland. Journal of Zoology 224, 177–190.
Ranging and nesting behaviour of the dormouse, Muscardinus avellanarius, in diverse low-growing woodland.Crossref | GoogleScholarGoogle Scholar |

Bright, P. W., and Morris, P. A. (1992). Ranging and nesting behaviour of the dormouse Muscardinus avellanarius, in coppice-with-standards woodland. Journal of Zoology 226, 589–600.
Ranging and nesting behaviour of the dormouse Muscardinus avellanarius, in coppice-with-standards woodland.Crossref | GoogleScholarGoogle Scholar |

Buckle, A. P. (1999). Rodenticides – their role in rodent pest management in tropical agriculture. In ‘Ecologically-based Rodent Management’. (Eds G. R. Singleton, L. A. Hinds, H. Leirs and Z. Zhang.) pp. 163–177. (Australian Centre for International Agricultural Research: Canberra.)

Buckle, A. P., and Smith, R. H. (Eds) (1994). ‘Rodent Pests and Their Control.’ (CAB International: Oxfordshire, UK.)

Burnham, K. P., and Anderson, D. R. (Eds) (2002). ‘Model Selection and Multimodel Inference: A Practical Information-theoretic Approach.’ 2nd edn. (Springer-Verlag: New York.)

Busch, M., and Kravetz, F. O. (1992a). Competitive interactions among rodents (Akodon azarae, Calomys laucha, Calomys musculinus and Oligoryzomys flavescens) in two habitat systems. I. Spatial and numerical relationships. Mammalia 56, 45–56.
Competitive interactions among rodents (Akodon azarae, Calomys laucha, Calomys musculinus and Oligoryzomys flavescens) in two habitat systems. I. Spatial and numerical relationships.Crossref | GoogleScholarGoogle Scholar |

Busch, M., and Kravetz, F. O. (1992b). Competitive interactions among rodents (Akodon azarae, Calomys laucha, Calomys musculinus and Oligoryzomys flavescens) in two habitat systems. II. Effect of species removal. Mammalia 56, 541–554.
Competitive interactions among rodents (Akodon azarae, Calomys laucha, Calomys musculinus and Oligoryzomys flavescens) in two habitat systems. II. Effect of species removal.Crossref | GoogleScholarGoogle Scholar |

Busch, M., Kravetz, F. O., Percich, R. E., and Zuleta, G. A. (1984). Propuestas para un control ecológico de la Fiebre Hemorrágica Argentina a través del manejo del hábitat. Medicina 44, 34–40.
| 1:STN:280:DyaL2M3jvFyhsQ%3D%3D&md5=c62c58a3b1d093ea01fa0ccde3dc8d17CAS |

Busch, M., Alvarez, M. R., Cittadino, E. A., and Kravetz, F. O. (1997). Habitat selection and interespecific competition in rodents in pampean agroecosystems. Mammalia 61, 167–184.
Habitat selection and interespecific competition in rodents in pampean agroecosystems.Crossref | GoogleScholarGoogle Scholar |

Busch, M., Miño, M. H., Dadon, J. R., and Hodara, K. (2000). Habitat selection by Calomys musculinus (Muridae, Sigmodontinae) in crop areas of the pampean region, Argentina. Ecología Austral 10, 15–26.

Cabrera, A. (1953). Esquema fitogeográfico de la República Argentina. Revista Museo de La Plata 8, 87–168.

Castellarini, F., Dellafiore, C., and Polop, J. J. (2003). Feeding habits of small mammals in agroecosystems of central Argentina. Mammalian Biology 68, 91–101.
Feeding habits of small mammals in agroecosystems of central Argentina.Crossref | GoogleScholarGoogle Scholar |

Chalfoun, A. D., and Martin, T. E. (2007). Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness. Journal of Applied Ecology 44, 983–992.
Assessments of habitat preferences and quality depend on spatial scale and metrics of fitness.Crossref | GoogleScholarGoogle Scholar |

Crawley, M. J. (Ed.) (2007). ‘The R Book.’ (Wiley: UK.)

de Villafañe, G., and Bonaventura, S. M. (1987). Ecological studies in crop fields of the endemic area of Argentine hemorragic fever. Calomys musculinus movements in relation to habitat and abundance. Mammalia 51, 233–248.
Ecological studies in crop fields of the endemic area of Argentine hemorragic fever. Calomys musculinus movements in relation to habitat and abundance.Crossref | GoogleScholarGoogle Scholar |

de Villafañe, G., Kravetz, F. O., Donadio, O., Percich, R., Knecher, L., Torres, M. P., and Fernández, N. (1977). Dinámica de las comunidades de roedores en agroecosistemas pampásicos. Medicina 37, 128–138.

Dellafiore, C. M., and Polop, J. J. (1994). Feeding habits of Calomys musculinus in the crop fields and its borders. Mastozoología Neotropical 1, 45–50.

Dueser, R. D., and Shugart, H. H. (1978). Microhabitats in a forest-floor small mammal fauna. Ecology 59, 89–98.
Microhabitats in a forest-floor small mammal fauna.Crossref | GoogleScholarGoogle Scholar |

Ellis, B. A., Mills, J. N., Childs, J. E., Muzzini, M. C., Mc Kee, K. T., Enria, D. A., and Glass, G. E. (1997). Structure and floristics of habitats associated with five rodent species in an agroecosystem in central Argentina. Journal of the Zoological Society of London 243, 437–460.
Structure and floristics of habitats associated with five rodent species in an agroecosystem in central Argentina.Crossref | GoogleScholarGoogle Scholar |

Ellis, B. A., Mills, J. N., Glass, G. E., Mc Kee, K. T., Enria, D. A., and Childs, J. E. (1998). Dietary habits of the common rodents in an agroecosystem in Argentina. Journal of Mammalogy 79, 1203–1220.
Dietary habits of the common rodents in an agroecosystem in Argentina.Crossref | GoogleScholarGoogle Scholar |

Fretwell, S. D. (1972). Theory of habitat distribution. In ‘Populations in a Seasonal Environment’. (Ed. R. H. McArthur.) pp. 79–109. (Princeton University Press: Princeton, NJ.)

Fretwell, S. D., and Lucas, H. L. (1970). On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica 19, 16–36.
On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development.Crossref | GoogleScholarGoogle Scholar |

Ghersa, C. M., and Martínez-Ghersa, M. A. (1991). Cambios ecológicos en los agroecosistemas de la Pampa Ondulada. Efectos de la introducción de la soja. Ciencia e Investigación Ecología 44, 182–188.

Guisan, A., and Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.
Predictive habitat distribution models in ecology.Crossref | GoogleScholarGoogle Scholar |

Kittlein, M. J. (1997). Assessing the impact of owl predation on the growth rate of a rodent prey population. Ecological Modelling 103, 123–134.
Assessing the impact of owl predation on the growth rate of a rodent prey population.Crossref | GoogleScholarGoogle Scholar |

Kravetz, F. O., and Polop, J. J. (1983). Comunidades de roedores en agroecosistemas del Departamento de Río Cuarto, Córdoba. Ecosur 10, 1–10.

Lima, M., Keymer, J. E., and Jaksic, F. M. (1999). El Niño–Southern Oscillation-driven rainfall variability and delayed density dependence cause rodent outbreaks in western South America: linking demography and population dynamics. American Naturalist 153, 476–491.
El Niño–Southern Oscillation-driven rainfall variability and delayed density dependence cause rodent outbreaks in western South America: linking demography and population dynamics.Crossref | GoogleScholarGoogle Scholar |

Lima, M., Julliard, R., Stenseth, N. C., and Jaksic, F. M. (2001). Demographic dynamics of a neotropical small rodent (Phyllotis darwini): feedback structure, predation and climatic factors. Journal of Animal Ecology 70, 761–775.
Demographic dynamics of a neotropical small rodent (Phyllotis darwini): feedback structure, predation and climatic factors.Crossref | GoogleScholarGoogle Scholar |

Lima, M., Stenseth, N. C., and Jaksic, F. M. (2002). Population dynamics of a South American rodent: seasonal structure interacting with climate, density dependence and predator effects. Proceedings. Biological Sciences 269, 2579–2586.
Population dynamics of a South American rodent: seasonal structure interacting with climate, density dependence and predator effects.Crossref | GoogleScholarGoogle Scholar |

Lima, M., Previtali, M. A., and Meserve, P. L. (2006). Climate and small rodent dynamics in semi-arid Chile: the role of lateral and vertical perturbations and intra-specific processes. Climate Research 30, 125–132.
Climate and small rodent dynamics in semi-arid Chile: the role of lateral and vertical perturbations and intra-specific processes.Crossref | GoogleScholarGoogle Scholar |

Lindsey, J. K. (1999). On the use of corrections for overdispersion. Applied Statistics 48, 553–561.
On the use of corrections for overdispersion.Crossref | GoogleScholarGoogle Scholar |

Logan, M. (Ed.) (2010). ‘Biostatistical Design and Analysis Using R: A Practical Guide.’ (Wiley-Blackwell: Oxford, UK.)

Lurz, P. W. W., Garson, P. J., and Wauters, L. (2000). Effects of temporal and spatial variations in food supply on the space use and habitat use of red squirrels (Sciurus vulgaris L.). Journal of Zoology 251, 167–178.
Effects of temporal and spatial variations in food supply on the space use and habitat use of red squirrels (Sciurus vulgaris L.).Crossref | GoogleScholarGoogle Scholar |

Magurran, A. E. (Ed.) (1991). ‘Ecological Diversity and its Measurement.’ (Chapman and Hall: London.)

Merriam, G. (1988). Landscape dynamics in farmland. Trends in Ecology & Evolution 3, 16–20.
Landscape dynamics in farmland.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7gvFWnsQ%3D%3D&md5=096d33df9e2cb73add625ffa1157ef72CAS |

Mills, J. N. (1999). The role of rodents in emerging human disease: examples from the hantaviruses and arenaviruses. In ‘Ecologically-based Rodent Management’. (Eds G. R. Singleton, L. A. Hinds, H. Leirs and Z. Zhang.) pp. 134–160. (Australian Centre for International Agricultural Research: Canberra.)

Mills, J. N., Ellis, B. A., Mc Kee, K. T., Maiztegui, J. I., and Childs, J. E. (1991). Habitat associations and relative densities of rodent population in cultivated areas of central Argentina. Journal of Mammalogy 72, 470–479.
Habitat associations and relative densities of rodent population in cultivated areas of central Argentina.Crossref | GoogleScholarGoogle Scholar |

Mills, J. N., Ellis, B. A., Mc Kee, K. T., Maiztegui, J. I., and Childs, J. E. (1992a). Reproductive characteristics of rodent assemblages in cultivated regions of central Argentina. Journal of Mammalogy 73, 515–526.
Reproductive characteristics of rodent assemblages in cultivated regions of central Argentina.Crossref | GoogleScholarGoogle Scholar |

Mills, J. N., Ellis, B. A., McKee, K. T., Calderón, G., Maiztegui, J. I., Nelson, G. O., Ksiazek, T. G., Peters, C. J., and Childs, J. E. (1992b). A longitudinal study of Junin virus activity in the rodent reservoir of Argentine hemorrhagic fever. The American Journal of Tropical Medicine and Hygiene 47, 749–763.
| 1:STN:280:DyaK3s7htFGjsw%3D%3D&md5=4e82b65163c4421722994e49886fd4e1CAS |

Morris, D. W. (1987). Spatial scale and the cost of density-dependent habitat selection. Evolutionary Ecology 1, 379–388.
Spatial scale and the cost of density-dependent habitat selection.Crossref | GoogleScholarGoogle Scholar |

Newsome, A. E., and Catling, P. C. (1979). Habitat preferences of mammals inhabiting heathlands of warm temperate coastal, montane and alpine regions of southern Australia. In ‘Heathlands and Related Shrublands of the World. Ecosystems of the World. Vol. 9A’. (Ed. R. L. Specht.) pp. 301–316. (Elsevier-Scientific Publishing Co.: Amsterdam.)

Norrdahl, K., and Korpimäki, E. (1998). Does mobility or sex of voles affect risk of predation by mammalian predators? Ecology 79, 226–232.
Does mobility or sex of voles affect risk of predation by mammalian predators?Crossref | GoogleScholarGoogle Scholar |

Olrog, C. C., and Lucero, M. M. (Eds) (1981). ‘Guía de los Mamíferos Argentinos.’ (Ministerio de Cultura y Educación. Fundación Miguel Lillo: Tucumán, Argentina.)

Orrock, J. L., Danielson, B. J., Burns, M. J., and Levey, D. J. (2003). Spatial ecology of predator–prey interactions: corridors and patch shape influence seed predation. Ecology 84, 2589–2599.
Spatial ecology of predator–prey interactions: corridors and patch shape influence seed predation.Crossref | GoogleScholarGoogle Scholar |

Paruelo, J. M., Guerschman, J. P., and Verón, S. R. (2005). Expansión agrícola y cambios en el uso del suelo. Ciencia Hoy 15, 14–23.

Polop, J. J., and Sabattini, M. S. (1993). Rodent abundance and distribution in habitats of agrocenosis in Argentina. Studies on Neotropical Fauna and Environment 28, 39–46.
Rodent abundance and distribution in habitats of agrocenosis in Argentina.Crossref | GoogleScholarGoogle Scholar |

Polop, J. J., Martinez, R. L., and Torres, M. P. (1985). Distribución y abundancia de poblaciones de pequeños roedores en la zona del Embalse de Río Tercero, Córdoba. Histoire et Nature 5, 33–44.

Porcasi, X., Calderón, G. E., Lamfri, M., Gardenal, C. N., Polop, J. J., Sabattini, M., and Scavuzzo, C. M. (2005). The use of satellite data in modelling population dynamics and prevalence of infection in the rodent reservoir of Junin virus. Ecological Modelling 185, 437–449.
The use of satellite data in modelling population dynamics and prevalence of infection in the rodent reservoir of Junin virus.Crossref | GoogleScholarGoogle Scholar |

Priotto, J., and Polop, J. (2003). Effect of overwintering adults on juvenile survival of Calomys venustus (Muridae: Sigmodontinae). Austral Ecology 28, 281–286.
Effect of overwintering adults on juvenile survival of Calomys venustus (Muridae: Sigmodontinae).Crossref | GoogleScholarGoogle Scholar |

Redford, K. H., and Eisenberg, J. F. (Eds) (1992). ‘Mammals of the Neotropics. The Southern Cone: Chile, Argentina, Paraguay and Uruguay.’ (University of Chicago Press: Chicago, IL.)

Rushton, S. P., Ormerod, S. J., and Kerby, G. (2004). New paradigms for modelling species distributions? Journal of Applied Ecology 41, 193–200.
New paradigms for modelling species distributions?Crossref | GoogleScholarGoogle Scholar |

Schaefer, J. A., and Messier, F. (1995). Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen. Ecography 18, 333–344.
Habitat selection as a hierarchy: the spatial scales of winter foraging by muskoxen.Crossref | GoogleScholarGoogle Scholar |

Shannon, C. E., and Weaver, W. (Eds) (1962). ‘The Mathematical Theory of Communication.’ (University of Illinois Press: Urbana, IL.)

Shore, R. F., Meek, W. R., Sparks, T. H., Pywell, R. F., and Nowakowski, M. (2005). Will environmental stewardship enhance small mammal abundance on intensively managed farmland? Mammal Review 35, 277–284.
Will environmental stewardship enhance small mammal abundance on intensively managed farmland?Crossref | GoogleScholarGoogle Scholar |

Simone, I. (2010). Variaciones en la abundancia de Calomys musculinus (Rodentia: Cricetidae) y su relación con variables ambientales en bordes de cultivo. Ph.D. Thesis, Universidad Nacional de Río Cuarto, Córdoba, Argentina.

Simone, I., Cagnacci, F., Provensal, C., and Polop, J. (2010). Environmental determinants of the small mammal assemblage in an agroecosystem of central Argentina: the role of Calomys musculinus. Mammalian Biology 75, 496–509.
Environmental determinants of the small mammal assemblage in an agroecosystem of central Argentina: the role of Calomys musculinus.Crossref | GoogleScholarGoogle Scholar |

Singleton, G., Krebs, C. J., Davis, S., Chambers, L., and Brown, P. (2001). Reproductive changes in fluctuating house mouse populations in southeastern Australia. Proceedings Biological Sciences 268, 1741–1748.
Reproductive changes in fluctuating house mouse populations in southeastern Australia.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3Mvmt1KqsA%3D%3D&md5=ee1ce574962ad0eb310921548f498608CAS |

Slade, N. A., and Russell, L. A. (1998). Distances as indices to movements and home-range size from trapping records of small mammals. Journal of Mammalogy 79, 346–351.
Distances as indices to movements and home-range size from trapping records of small mammals.Crossref | GoogleScholarGoogle Scholar |

Smith, T. L., Bevelander, G. S., and Kardong, K. V. (2005). Influence of prey odor concentration on the poststrike trailing behavior of the northern pacific rattlesnake. Herpetologica 61, 111–115.
Influence of prey odor concentration on the poststrike trailing behavior of the northern pacific rattlesnake.Crossref | GoogleScholarGoogle Scholar |

Sommaro, L., Gomez, D., Bonatto, F., Steinmann, A., Chiappero, M., and Priotto, J. (2010). Corn mice (Calomys musculinus) movement in linear habitats of agricultural ecosystems. Journal of Mammalogy 91, 668–673.
Corn mice (Calomys musculinus) movement in linear habitats of agricultural ecosystems.Crossref | GoogleScholarGoogle Scholar |

Stenseth, N. C., Viljugrein, H., Jedrzejewski, W., Mysterud, A., and Pucek, Z. (2002). Population dynamics of Clethrionomys glareolus and Apodemus flavicollis: seasonal components of density dependence and density independence. Acta Theriologica 47, 39–67.
Population dynamics of Clethrionomys glareolus and Apodemus flavicollis: seasonal components of density dependence and density independence.Crossref | GoogleScholarGoogle Scholar |

Stenseth, N. C., Ottersen, G., Hurrell, J. W., Mysterud, A., Lima, M., Chan, K.-S., Yoccoz, N. G., and Ådlandsvik, B. (2003). Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond. Proceedings Biological Sciences 270, 2087–2096.
Studying climate effects on ecology through the use of climate indices: the North Atlantic Oscillation, El Niño Southern Oscillation and beyond.Crossref | GoogleScholarGoogle Scholar |

Sutherland, W. J. (Ed.) (1996). ‘From Individual Behaviour to Population Ecology.’ (Oxford University Press: New York.)

Tufto, J., Andersen, R., and Linnell, J. (1996). Habitat use and ecological correlates of home range size in small cervid: the roe deer. Journal of Animal Ecology 65, 715–724.
Habitat use and ecological correlates of home range size in small cervid: the roe deer.Crossref | GoogleScholarGoogle Scholar |

Van Horne, B. (1982). Niches of adult and juvenile deer mice (Peromyscus maniculatus) in seral stages of coniferous forest. Ecology 63, 992–1003.
Niches of adult and juvenile deer mice (Peromyscus maniculatus) in seral stages of coniferous forest.Crossref | GoogleScholarGoogle Scholar |

Viglizzo, E. F., Lértora, F. A., Pordomingo, A. J., Bernardos, J. N., Roberto, Z. E., and Del Valle, H. (2001). Ecological lessons and applications from one century of low-external input farming in the pampas of Argentina. Agriculture, Ecosystems & Environment 83, 65–81.
Ecological lessons and applications from one century of low-external input farming in the pampas of Argentina.Crossref | GoogleScholarGoogle Scholar |

Viglizzo, E. F., Pordomingo, A. J., Castro, M. G., and Lértora, F. A. (2002). ‘La Sustentabilidad del Agro Pampeano.’ (INTA: Buenos Aires.)

Wiens, J. A., Stenseth, N. C., Van Horne, B., and Ims, R. A. (1993). Ecological mechanisms and landscape ecology. Oikos 66, 369–380.
Ecological mechanisms and landscape ecology.Crossref | GoogleScholarGoogle Scholar |

Yletyinen, S., and Norrdahl, K. (2008). Habitat use of field voles (Microtus agrestis) in wide and narrow buffer zones. Agriculture, Ecosystems & Environment 123, 194–200.
Habitat use of field voles (Microtus agrestis) in wide and narrow buffer zones.Crossref | GoogleScholarGoogle Scholar |