Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Evaluation of attractants for non-invasive studies of Iberian carnivore communities

Pedro Monterroso A B C E , Paulo Célio Alves A B D and Pablo Ferreras C
+ Author Affiliations
- Author Affiliations

A CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas nr 7, Crasto, 4485-661 Vairão, Portugal.

B Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, Porto, Portugal.

C Instituto de Investigación en Recursos Cinegéticos (IREC, CSIC-UCLM-JCCM), Ronda de Toledo, Ciudad Real, España.

D University of Montana, Wildlife Biology Program, College of Forestry and Conservation, Missoula, MT 59812, USA.

E Corresponding author. Email: pmonterroso@mail.icav.up.pt

Wildlife Research 38(5) 446-454 https://doi.org/10.1071/WR11060
Submitted: 20 March 2011  Accepted: 1 July 2011   Published: 12 October 2011

Abstract

Context: The estimation of population parameters for mammalian carnivore species is a challenging task because of their low densities and large home ranges, which make detection probabilities very low. Several factors, such as the species abundance, habitat structure or the use of an attractant affect carnivore detection probabilities; however, attractants are the most easily manipulated. Some previous research suggests that the use of effective attractants can significantly increase detection probabilities.

Aims: To assess the effectiveness of several attractants for Iberian carnivores, and to evaluate their usefulness for non-invasive survey methods.

Methods: The responses of seven carnivore species to six potential attractants were evaluated through cafeteria-like experiments with captive specimens. A selectivity index was applied to assess the relative attractiveness of each tested substance. The enclosure tests were followed by field trials with camera-trapping, using the most promising attractants for field evaluation of their efficiency.

Key results: Enclosure trials revealed that lynx urine was the most effective and generalist attractant because it successfully attracted six of the seven species tested. Rubbing behaviour was also induced in the greatest number of species by lynx urine. Field tests using a combination of lynx urine and valerian extract solution induced investigative behaviours in over 50% of all detection events in all species, with the exception of the Eurasian badger.

Conclusions: No single attractant is effective for all species. Nevertheless, a combination of lynx urine and valerian solution should efficiently attract the majority of species present in Iberian carnivore communities. Furthermore, some species exhibit a rubbing behaviour when they come in contact with the attractants. Regardless of the generalist efficiency of the lynx urine, other tested substances revealed promising results for single-species monitoring.

Implications: Our results provide a baseline for selecting attractants in survey and monitoring programs that focus on carnivore species. The rubbing behaviours exhibited by several of the species tested suggest the use of these attractants could improve the efficiency of field studies that rely on rub-pads for the collection of biological samples.

Additional keywords: attractant effectiveness, behavioural response, efficacy, Iberian carnivores, population monitoring, species detection.


References

Andelt, W. F., and Woolley, T. P. (1996). Responses of urban mammals to odor attractants and a bait-dispensing device. Wildlife Society Bulletin 24, 111–118.

Ballenberghe, V. V. (1984). Injuries to wolves sustained during live-capture. The Journal of Wildlife Management 48, 1425–1429.
Injuries to wolves sustained during live-capture.Crossref | GoogleScholarGoogle Scholar |

Blanco, J. C. (1998). ‘Mamíferos de España, 2 Vols.’ (Ed. Planeta: Barcelona, Spain.)

Cabral, M. J., Almeida, J., Almeida, P. R., Dellinger, T., Ferrand de Almeida, N., Oliveira, M. E., Palmeirim, J. M., Queiroz, A. I., Rogado, L., and Santos-Reis, M. (Eds) (2005). ‘Livro Vermelho dos Vertebrados de Portugal.’ 2nd edn. (Instituto da Conservação da Natureza/Assírio Alvim: Lisboa, Portugal). [In Portuguese.]

Childers-Zadah, V. (1998). Use of valerian plant and/or root as a scent attractant for stimulating canines and felines. US Patent 5,786,382.

Clapperton, B. K., Eason, T., Weston, R. J., Woolhouse, A. D., and Morgan, D. R. (1994). Development and testing of attractants for feral cats, Felis catus L. Wildlife Research 21, 389–399.
Development and testing of attractants for feral cats, Felis catus L.Crossref | GoogleScholarGoogle Scholar |

Costa, J. C., Aguiar, C., Capelo, J. H., Lousã, M., and Neto, C. (1998). Biogeografia de Portugal continental. Quercetea 0, 5–56.

Djabalameli, J. (2005). Hair catching with the aid of the ‘Lure Stick’. Proof of wildcat (Felis silvestris) existence by genetic analysis. A project by BUND and Bayerisches Landesamt für Umweltschutz. In ‘Biology and Conservation of the European Wildcat (Felis silvestris silvestris)’ seminar. Nienover, Germany

Edwards, G. P., Piddington, K. C., and Paltridge, R. M. (1997). Field evaluation of olfactory lures for feral cats (Felis catus L.) in central Australia. Wildlife Research 24, 173–183.
Field evaluation of olfactory lures for feral cats (Felis catus L.) in central Australia.Crossref | GoogleScholarGoogle Scholar |

Erlinge, S., and Sandell, M. (1988). Coexistence of stoat, Mustela erminea, and weasel, M. nivalis: social dominance, scent communication, and reciprocal distribution. Oikos 53, 242–246.
Coexistence of stoat, Mustela erminea, and weasel, M. nivalis: social dominance, scent communication, and reciprocal distribution.Crossref | GoogleScholarGoogle Scholar |

Fagre, D. B., Howard, W. E., Barnum, D. A., Teranishi, R., Schultz, T. H., and Stern, D. J. (1983). Criteria for the development of coyote lures. In ‘Vertebrate Pest Control and Management Materials: Fourth Symposium.’ ASTM STP 817. (Ed. D. E. Kaukeinen.) pp. 265–277. (American Society for Testing Materials: Philadelphia, PA.)

Gosling, L. M., and McKay, H. V. (1990). Competitor assessment by scent matching: an experimental test. Behavioral Ecology and Sociobiology 26, 415–420.
Competitor assessment by scent matching: an experimental test.Crossref | GoogleScholarGoogle Scholar |

Harrington, L. A., Harrington, A. L., and Macdonald, D. W. (2009). The smell of new competitors: the response of American mink, Mustela vison, to the odours of otter, Lutra lutra and polecat, M. putorius. Ethology 115, 421–428.
The smell of new competitors: the response of American mink, Mustela vison, to the odours of otter, Lutra lutra and polecat, M. putorius.Crossref | GoogleScholarGoogle Scholar |

Harrison, R. L. (1997). Chemical attractants for central American felids. Wildlife Society Bulletin 25, 93–97.

Harrison, R. L. (2006). A comparison of survey methods for detecting bobcats. Wildlife Society Bulletin 34, 548–552.
A comparison of survey methods for detecting bobcats.Crossref | GoogleScholarGoogle Scholar |

Howard, M. E., Zuercher, G. L., Gipson, P. S., and Livingston, T. R. (2002). Efficacy of feces as an attractant for mammalian carnivores. The Southwestern Naturalist 47, 348–352.
Efficacy of feces as an attractant for mammalian carnivores.Crossref | GoogleScholarGoogle Scholar |

Hunt, R. J., Dall, D. J., and Lapidge, S. J. (2007). Effect of a synthetic lure on site visitation and bait uptake by foxes (Vulpes vulpes) and wild dogs (Canis lupus dingo, Canis lupus familiaris). Wildlife Research 34, 461–466.
Effect of a synthetic lure on site visitation and bait uptake by foxes (Vulpes vulpes) and wild dogs (Canis lupus dingo, Canis lupus familiaris).Crossref | GoogleScholarGoogle Scholar |

Hutchings, M. R., and White, P. (2000). Mustelid scent-marking in managed ecosystems: implications for population management. Mammal Review 30, 157–169.
Mustelid scent-marking in managed ecosystems: implications for population management.Crossref | GoogleScholarGoogle Scholar |

Ivlev, V. S. (1961) ‘Experimental Ecology of the Feeding of Fishes.’ (Yale University Press: New Haven, CT.)

Jacobs, J. (1974). Quantitative measurement of food selection. A modification of the forage ratio and Ivlev’s electivity index. Oecologia 14, 413–417.
Quantitative measurement of food selection. A modification of the forage ratio and Ivlev’s electivity index.Crossref | GoogleScholarGoogle Scholar |

Jerosch, S., Götz, M., Klar, N., and Roth, M. (2010). Characteristics of diurnal resting sites of the endangered European wildcat (Felis silvestris silvestris): implications for its conservation. Journal for Nature Conservation 18, 45–54.
Characteristics of diurnal resting sites of the endangered European wildcat (Felis silvestris silvestris): implications for its conservation.Crossref | GoogleScholarGoogle Scholar |

Kelly, M. J., Noss, A. J., Di Bitetti, M. S., Maffei, L., Arispe, R. L., Paviolo, A., Angelo, C. D., and Di Blanco, Y. E. (2008). Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize. Journal of Mammalogy 89, 408–418.
Estimating puma densities from camera trapping across three study sites: Bolivia, Argentina, and Belize.Crossref | GoogleScholarGoogle Scholar |

Klar, N., Herrmann, M., and Kramer-Schadt, S. (2009). Effects and mitigation of road impacts on individual movement behavior of wildcats. The Journal of Wildlife Management 73, 631–638.
Effects and mitigation of road impacts on individual movement behavior of wildcats.Crossref | GoogleScholarGoogle Scholar |

Long, R. A., MacKay, P., Ray, J., and Zielinski, W. (2008). ‘Noninvasive survey methods for carnivores.’ (Island Press: Washington, DC.)

Mackenzie, D. I., and Royle, J. A. (2005). Designing occupancy studies: general advice and allocating survey effort. Journal of Applied Ecology 42, 1105–1114.
Designing occupancy studies: general advice and allocating survey effort.Crossref | GoogleScholarGoogle Scholar |

Manly, B. (1997). ‘Randomization, Bootstrap and Monte Carlo Methods in Biology.’ 2nd edn. (Chapman and Hall: Boca Raton, FL.)

McDaniel, G. W., McKelvey, K. S., Squires, J. R., and Ruggiero, L. F. (2000). Efficacy of lures and hair snares to detect lynx. Wildlife Society Bulletin 28, 119–123.

Michalski, F., Crawshaw, P. J., Oliveira, T. G., and Fabián, M. E. (2007). Efficiency of box-traps and leg-hold traps with several bait types for capturing small carnivores (Mammalia) in a disturbed area of southeastern Brazil. Revista de Biologia Tropical 55, 315–320.

Miguel, F. J., Marques, I., and Monclús, R. (2005). Respuesta de los zorros (Vulpes vulpes Linnaeus, 1758) al olor de otros carnívoros. Galemys 17, 113–121.

Mitchell-Jones, A. G., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P. J. H., Spitzenberger, E., Stubbe, M., Thissen, J. B. M., Vohralik, V., and Zima, J. (1999). ‘The Atlas of European Mammals.’ (T and AD Poyser Natural History: London.)

Mondol, S., Karanth, K. U., Kumar, N. S., Gopalaswamy, A. M., Andheria, A., and Ramakrishnan, U. (2009). Evaluation of non-invasive genetic sampling methods for estimating tiger population size. Biological Conservation 142, 2350–2360.
Evaluation of non-invasive genetic sampling methods for estimating tiger population size.Crossref | GoogleScholarGoogle Scholar |

Monterroso, P. (2006). Selecção de habitat e análise dos factores que condicionam a presença e abundância de gato-bravo (Felis silvestris) no Parque Natural do Vale do Guadiana. M.Sc. Thesis, University of Porto, Porto, Portugal. [In Portuguese.]

Moruzzi, T. L., Fuller, T. K., DeGraaf, R. M., Brooks, R. T., and Li, W. (2002). Assessing remotely triggered cameras for surveying carnivore distribution. Wildlife Society Bulletin 30, 380–386.

Palomares, F., and Caro, T. M. (1999). Interspecific killing among mammalian carnivores. American Naturalist 153, 492–508.
Interspecific killing among mammalian carnivores.Crossref | GoogleScholarGoogle Scholar |

Palomares, F., Delibes, M., Ferreras, P., Fedriani, J. M., Calzada, J., and Revilla, E. (2000). Iberian lynx in a fragmented landscape: predispersal, dispersal, and postdispersal habitats. Conservation Biology 14, 809–818.
Iberian lynx in a fragmented landscape: predispersal, dispersal, and postdispersal habitats.Crossref | GoogleScholarGoogle Scholar |

Palomo, L. J., Gisbert, J., and Blanco, J. C. (2007). ‘Atlas y Libro Rojo de los Mamíferos Terrestres de España.’ (Dirección General para la Biodiversidad – SECEM – SECEMU: Madrid, Spain.) [In Spanish]

Phillips, R. L., Blom, F. S., and Engeman, R. M. (1990). Responses of captive coyotes to chemical attractants. In ‘Proceedings of the Vertebrate Pest Conference’. (Eds L. R. Davis and R. E. Marsh.) pp. 285–290. (University of California: Davis.)

Raal, A., Orav, A., Arak, E., Kailas, T., and Müürisepp, M. (2007). Variation in the composition of the essential oil of Valeriana officinalis L. roots from Estonia. Proceedings of Estonian Academy of Sciences Chemistry 56, 67–74.
| 1:CAS:528:DC%2BD2sXnvVaisrY%3D&md5=5932472de3756c4e2a66dd296af75a2cCAS |

Ralls, K. (1971). Mammalian scent marking. Science 171, 443–449.
Mammalian scent marking.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE3M%2FnslCmtg%3D%3D&md5=816a719441f5f1a22fed6c71083e34d5CAS |

Rivas-Martinez, S. (1981). Les étages bioclimatiques de la végétation de la Peninsule Iberique. Anales del Jardin Botanico de Madrid 37, 251–268.

Rivas-Martínez, S., Penas, A., and Díaz, T. E. (2004). ‘Mapa Bioclimático de Europa, Bioclimas.’ (Servicio Cartográfico de la Universidad de León: Madrid, España) Available at http://www.ucm.es/info/cif/form/maps.htm [accessed January 2010]

Rodgers, A. R. (1990). Evaluating preference in laboratory studies of diet selection. Canadian Journal of Zoology-Revue Canadienne de Zoologie 68, 188–190.
Evaluating preference in laboratory studies of diet selection.Crossref | GoogleScholarGoogle Scholar |

Roughton, R. D. (1982). A synthetic alternative to fermented egg as a canid attractant. The Journal of Wildlife Management 46, 230–234.
A synthetic alternative to fermented egg as a canid attractant.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkvVOjsL4%3D&md5=a2d885ff49aff31a324b57786c8f21deCAS |

Roughton, R. D., and Sweeny, M. W. (1982). Refinements in scent-station methodology for assessing trends in carnivore populations. The Journal of Wildlife Management 46, 217–229.
Refinements in scent-station methodology for assessing trends in carnivore populations.Crossref | GoogleScholarGoogle Scholar |

Saunders, G., and Harris, S. (2000). Evaluation of attractants and bait preferences of captive red foxes (Vulpes vulpes). Wildlife Research 27, 237–243.
Evaluation of attractants and bait preferences of captive red foxes (Vulpes vulpes).Crossref | GoogleScholarGoogle Scholar |

Schlexer, F. V. (2008). Attracting animals to detection devices. In ‘Noninvasive Survey Methods for Carnivores’. (Eds R. A. Long, P. MacKay, W. J. Zielinski and J. C. Ray.) pp. 263–292. (Island Press: Washington, DC.)

Schmidt, K., and Kowalczyk, R. (2006). Using scent-marking stations to collect hair samples to monitor Eurasian lynx populations. Wildlife Society Bulletin 34, 462–466.
Using scent-marking stations to collect hair samples to monitor Eurasian lynx populations.Crossref | GoogleScholarGoogle Scholar |

Sunquist, M., and Sunquist, F. (2002). ‘Wild Cats of the World.’ (Chicago University Press: London.)

Thomas, P., Balme, G., Hunter, L., and McCabe-Parodi, J. (2005). Using scent attractants to noninvasively collect hair samples from cheetahs, leopards and lions. Animal Keeper’s Forum 7/8, 342–384.

Thorn, M., Scott, D. M., Green, M., Bateman, P. W., and Cameron, E. Z. (2009). Estimating brown hyaena occupancy using baited camera traps. South African Journal of Wildlife Research 39, 1–10.
Estimating brown hyaena occupancy using baited camera traps.Crossref | GoogleScholarGoogle Scholar |

Toft, C. A. (1980). Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment. Oecologia 45, 131–141.
Feeding ecology of thirteen syntopic species of anurans in a seasonal tropical environment.Crossref | GoogleScholarGoogle Scholar |

Travaini, A., Rodríguez, A., Procopio, D., Zapata, S. C., Zánon, J. I., and Martínez-Peck, R. (2010). A monitoring program for Patagonian foxes based on power analysis. European Journal of Wildlife Research 56, 421–433.
A monitoring program for Patagonian foxes based on power analysis.Crossref | GoogleScholarGoogle Scholar |

Weaver, J. L., Wood, P., Paetkau, D., and Laack, L. L. (2005). Use of scented hair snares to detect ocelots. Wildlife Society Bulletin 33, 1384–1391.
Use of scented hair snares to detect ocelots.Crossref | GoogleScholarGoogle Scholar |

Williams, B. K., Nichols, J. D., and Conroy, M. J. (2002). ‘Analysis and Management of Animal Populations.’ (Academic Press: San Diego, CA.)

Wilson, G., and Delahay, R. (2001). A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildlife Research 28, 151–164.
A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation.Crossref | GoogleScholarGoogle Scholar |

Wilson, R. R., Blankenship, T. L., Hooten, M. B., and Shivik, J. A. (2010). Prey-mediated avoidance of an intraguild predator by its intraguild prey. Oecologia 164, 921–929.
Prey-mediated avoidance of an intraguild predator by its intraguild prey.Crossref | GoogleScholarGoogle Scholar |

Zielinski, W. J., Truex, R. L., Schlexer, F. V., Campbell, L. A., and Carroll, C. (2005). Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA. Journal of Biogeography 32, 1385–1407.
Historical and contemporary distributions of carnivores in forests of the Sierra Nevada, California, USA.Crossref | GoogleScholarGoogle Scholar |