Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE (Open Access)

Using population genetic tools to develop a control strategy for feral cats (Felis catus) in Hawai‘i

Heidi Hansen A B , Steven C. Hess C E , David Cole A D and Paul C. Banko C
+ Author Affiliations
- Author Affiliations

A Hawai‘i Cooperative Studies Unit (PACRC, UH Hilo), US Geological Survey Pacific Island Ecosystems Research Center, Kīlauea Field Station, PO Box 44, Hawai‘i National Park, HI 96718 USA.

B Current address: Department of Land and Natural Resources, Division of Forestry and Wildlife, 19 East Kawili Street, Hilo, HI 96720, USA.

C US Geological Survey Pacific Island Ecosystems Research Center, Kīlauea Field Station, PO Box 44, Hawai‘i National Park, HI 96718 USA.

D Current address: University of Hawai‘i at Mānoa, 3190 Maile Way, Room 101, Honolulu, HI 96822, USA.

E Corresponding author. Email: steve_hess@usgs.gov

Wildlife Research 34(8) 587-596 https://doi.org/10.1071/WR07043
Submitted: 10 April 2007  Accepted: 5 October 2007   Published: 18 December 2007

Abstract

Population genetics can provide information about the demographics and dynamics of invasive species that is beneficial for developing effective control strategies. We studied the population genetics of feral cats on Hawai‘i Island by microsatellite analysis to evaluate genetic diversity and population structure, assess gene flow and connectivity among three populations, identify potential source populations, characterise population dynamics, and evaluate sex-biased dispersal. High genetic diversity, low structure, and high number of migrants per generation supported high gene flow that was not limited spatially. Migration rates revealed that most migration occurred out of West Mauna Kea. Effective population size estimates indicated increasing cat populations despite control efforts. Despite high gene flow, relatedness estimates declined significantly with increased geographic distance and Bayesian assignment tests revealed the presence of three population clusters. Genetic structure and relatedness estimates indicated male-biased dispersal, primarily from Mauna Kea, suggesting that this population should be targeted for control. However, recolonisation seems likely, given the great dispersal ability that may not be inhibited by barriers such as lava flows. Genetic monitoring will be necessary to assess the effectiveness of future control efforts. Management of other invasive species may benefit by employing these population genetic tools.


Acknowledgements

This project was funded in part by the USGS–NPS Natural Resources Partnership Program (NRPP) and the USGS Invasive Species Program. We thank D. Hu, K. Misajon, R. Swift, J. T. Tunison, D. M. Goltz, R. M. Danner, D. Nelson, and R. M. Stephens for assistance, facilitation, guidance, and samples. N. Seavy and two anonymous reviewers provided helpful comments. Finally, we thank our research interns E. Baldwin and A. Bies, who provided invaluable assistance in gathering data. Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the USA Government.


References

Abdelkrim, J. , Pascal, M. , Calmet, C. , and Samadi, S. (2005). Importance of assessing population genetic structure before eradication of invasive species: examples from insular Norway rat populations. Conservation Biology 19, 1509–1518.
Crossref | GoogleScholarGoogle Scholar | Belkhir K., Castric V., and Bonhomme F. (2002). ‘IDENTIX, a Software to Test for Relatedness in a Population using Permutation Methods.’ (Université Montpellier II: Montpellier, France.)

Bester, M. N. , Bloomer, J. P. , Van Aarde, R. J. , Erasmus, B. H. , Van Rensburg, P. J. J. , Skinner, J. D. , Howell, P. G. , and Naude, T. W. (2002). A review of the successful eradication of feral cats from the sub-Antarctic Marion Island, southern Indian Ocean. South African Journal of Wildlife Research 32, 65–73.
Brackenridge W. D. (1841). Journal kept while on the U.S. exploring expedition, 1838–1841. Unpublished manuscript at the Maryland Historical Society.

Cegelski, C. C. , Waits, L. P. , and Anderson, N. J. (2003). Assessing population structure and gene flow in Montana wolverines (Gulo gulo) using assignment-based approaches. Molecular Ecology 12, 2907–2918.
Crossref | GoogleScholarGoogle Scholar | PubMed | ESRI (1999). ‘ArcView GIS Version 3.2.’ (Environmental Systems Research Institute: Redlands, CA.)

Favre, L. , Balloux, F. , Goudet, J. , and Perrin, N. (1997). Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proceedings of the Royal Society of London. Series B. Biological Sciences 264, 127–132.
Crossref | GoogleScholarGoogle Scholar | Goudet J. (2001). ‘FSTAT, a Program to Estimate and Test Gene Diversities and Fixation Indices (Version 2.9.3).’ (Université de Lausanne: Dorigny, Switzerland.)

Goudet, J. , Perrin, N. , and Waser, P. (2002). Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Molecular Ecology 11, 1103–1114.
Crossref | GoogleScholarGoogle Scholar | PubMed | King C. (Ed.) (1984). ‘Immigrant Killers: Introduced Predators and the Conservation of Birds in New Zealand.’ (Oxford University Press: Auckland.)

Kyle, C. J. , and Strobeck, C. (2001). Genetic structure of North American wolverine (Gulo gulo) populations. Molecular Ecology 10, 337–347.
Crossref | GoogleScholarGoogle Scholar | PubMed | Liedloff A. (1999). ‘Mantel v2.0: Mantel Nonparametric Test Calculator.’ (Queensland University of Technology: Brisbane.)

Lowe S., Browne M., Boudjelas S., and De Poorter M. (2000). 100 of the world’s worst invasive alien species. A selection from the global invasive species database. The Invasive Species Specialist Group (ISSG) a specialist group of the Species Survival Group (SSC) of the World Conservation Union (IUCN). ISSG, Auckland.

Lynch, M. , and Ritland, K. (1999). Estimation of pairwise relatedness with molecular markers. Genetics 152, 1753–1766.
PubMed | Manly B. F. J. (Ed.) (1991). ‘Randomization and Monte Carlo Methods in Biology.’ (Chapman and Hall: New York.)

Menotti-Raymond, M. A. , David, V. A. , Wachter, L. L. , Butler, J. M. , and O’Brien, S. J. (2005). An STR forensic typing system for genetic individualization of domestic cat (Felis catus) samples. Journal of Forensic Sciences 50, 1061–1070.
Crossref | GoogleScholarGoogle Scholar | PubMed | Molsher R. L. (1999). The ecology of feral cats, Felis catus, in open forest in New South Wales: interactions with food resources and foxes. Ph.D. Thesis, University of Sydney, Australia.

Myers, J. H. , Simberloff, D. , Kuris, A. M. , and Carey, J. R. (2000). Eradication revisited: dealing with exotic species. Trends in Ecology & Evolution 15, 316–320.
Crossref | GoogleScholarGoogle Scholar | Peel D., Ovenden J. R., and Peel S. L. (2004). NeEstimator: software for estimating effective population size. Version 1.3. Queensland Government, Department of Primary Industries and Fisheries, Brisbane.

Pierpaoli, M. , Birò, Z. S. , Herrmann, M. , Hupe, K. , Fernández, M. , Ragni, B. , Szemethy, L. , and Randi, E. (2003). Genetic distinction of wildcat (Felis silvestris) populations in Europe, and hybridization with domestic cats in Hungary. Molecular Ecology 12, 2585–2598.
Crossref | GoogleScholarGoogle Scholar | PubMed | Simons T. R. (1983). Biology and conservation of the endangered Hawaiian dark-rumped petrel (Pterodroma phaeopygia sandwichensis). National Park Service, Cooperative Studies Unit, University of Washington, CPSU/UW 83–2, Seattle, Washington.

Slate, J. , Kruuk, L. E. B. , Marshall, T. C. , Pemberton, J. M. , and Clutton-Brock, T. H. (2000). Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proceedings of the Royal Society of London. Series B. Biological Sciences 267, 1657–1662.
Crossref | GoogleScholarGoogle Scholar | Wright S. (Ed.) (1969). ‘Evolution and the Genetics of Populations. Volume 2. The Theory.’ (University of Chicago Press: Chicago, IL.)