Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Evaluation of predator numerical responses

Jim Hone A E , Charles Krebs A B , Mark O’Donoghue B C and Stan Boutin D
+ Author Affiliations
- Author Affiliations

A Institute for Applied Ecology, University of Canberra, Canberra, ACT 2601, Australia.

B Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

C Department of Environment, PO Box 310, Mayo, Yukon Y0B 1M0 Canada.

D Department of Biological Sciences, University of Alberta, Edmonton, AL T6G 2E9, Canada.

E Corresponding author. Email: Jim.Hone@canberra.edu.au

Wildlife Research 34(5) 335-341 https://doi.org/10.1071/WR06171
Submitted: 12 December 2006  Accepted: 2 July 2007   Published: 6 September 2007

Abstract

We evaluated hypotheses of the dynamics of predators (lynx) relative to prey (snowshoe hares) and predator abundance in the Yukon, Canada. The hypotheses were that predator (lynx) dynamics are influenced by prey density, or by both prey and predator densities. Annual lynx population growth rate (r), estimated from lynx counts, was positively related to previous hare density and negatively related to previous lynx density, as described by the best-fitting additive model (R2 = 0.85). Annual lynx growth rate (r) estimated from lynx tracks was positively related to the ratio of hares per lynx in the best-fitting model (R2 = 0.55). There was most support for the prey- and predator-dependent hypothesis of predator dynamics. Projected lynx tracks showed similar trends to observed abundance but lagged one year, emphasising the need for evaluation of projected predator trends.


Acknowledgements

We thank Elizabeth Hofer, Peter Upton, Alice Kenney and the lynx snow tracking team at Kluane Lake. Funds were provided by the Natural Sciences and Engineering Research Council of Canada. Animal handling procedures were approved by the Animal Care Committee of the University of British Columbia. The University of Canberra and Landcare Research (NZ) are thanked for facilities and support. Two referees are thanked for their constructive suggestions on the manuscript.


References

Abrams, P. A. , and Ginzburg, L. R. (2000). The nature of predation: prey dependent, ratio dependent or neither? Trends in Ecology & Evolution 15, 337–341.
Crossref | GoogleScholarGoogle Scholar | Bayliss P. (1987). Kangaroo dynamics. In ‘Kangaroos. Their Ecology and Management in the Sheep Rangelands of Australia’. (Eds G. Caughley, N. Shepherd and J. Short.) pp. 119–134. (Cambridge University Press: Cambridge.)

Berryman, A. A. , Gutierrez, A. P. , and Arditi, R. (1995). Credible, parsimonious and useful predator–prey models – a reply to Abrams, Gleeson and Sarnelle. Ecology 76, 1980–1985.
Crossref | GoogleScholarGoogle Scholar | Burnham K. P., and Anderson D. R. (2002). ‘Model Selection and Multimodel Inference. A Practical Information-theoretic Approach.’ (Springer Verlag: Berlin.)

Caughley G. (1977). ‘Analysis of Vertebrate Populations.’ (Wiley: New York.)

Caughley, G. , and Krebs, C. J. (1983). Are big mammals simply little mammals writ large? Oecologia 59, 7–17.
Crossref | GoogleScholarGoogle Scholar | Choquenot D., Krebs C. J., Sinclair A. R. E., Boonstra R., and Boutin S. (2001). Vertebrate community structure in the boreal forest. In ‘Ecosystem Dynamics of the Boreal Forest. The Kluane Project’. (Eds C. J. Krebs, S. Boutin and R. Boonstra.) pp. 437–462. (Oxford University Press: Oxford.)

Dennis, B. , and Otten, M. R. M. (2000). Joint effects of density dependence and rainfall on abundance of San Joaquin kit fox. Journal of Wildlife Management 64, 388–400.
Crossref | GoogleScholarGoogle Scholar | Freund R. J., and Little R. C. (1986). ‘SAS System for Regression.’ (SAS Institute Inc.: Cary, NJ.)

Ginzburg, L. R. , and Jensen, C. X. J. (2004). Rules of thumb for judging ecological theories. Trends in Ecology & Evolution 19, 121–126.
Crossref | GoogleScholarGoogle Scholar | Krebs C. J., Boutin S., and Boonstra R. (2001). ‘Ecosystem Dynamics of the Boreal Forest: the Kluane Project.’ (Oxford University Press: Oxford.)

Leslie, P. H. (1948). Some further notes on the use of matrices in population mathematics. Biometrika 35, 213–245.
May R. M. (1981). Models for interacting populations. In ‘Theoretical Ecology. Principles and Applications.’ 2nd edn. (Ed. R. M. May.) pp. 5–29. (Blackwell: Oxford.)

May, R. M. , Conway, G. R. , Hassell, M. P. , and Southwood, T. R. E. (1974). Time delays, density-dependence and single-species oscillations. Journal of Animal Ecology 43, 747–770.
Crossref | GoogleScholarGoogle Scholar | O’Donoghue M. (1997). Responses of coyotes and lynx to the snowshoe hare cycle. Ph.D. Thesis, University of British Columbia, Vancouver.

O’Donoghue, M. , Boutin, S. , Krebs, C. J. , and Hofer, E. J. (1997). Numerical responses of coyotes and lynx to the snowshoe hare cycle. Oikos 80, 150–162.
Crossref | GoogleScholarGoogle Scholar | O’Donoghue M., Boutin S., Murray D. L., Krebs C. J., Hofer E. J., Breitenmoser U., Breitenmoser-Wuersten C., Zuleta G., Doyle C., and Nams V. O. (2001). Coyotes and lynx. In ‘Ecosystem Dynamics of the Boreal Forest: the Kluane Project.’ (Eds C. J. Krebs, S. Boutin, and R. Boonstra.) pp. 275–323. (Oxford University Press: Oxford.)

Pech, R. , and Hood, G. (1998). Foxes, rabbits, alternative prey and rabbit calicivirus disease: consequences of a new biological control agent for an outbreaking species. Journal of Applied Ecology 35, 434–453.
Crossref | GoogleScholarGoogle Scholar | Pielou E. C. (1969). ‘An Introduction to Mathematical Ecology.’ (Wiley: New York.)

Richards, S. A. (2005). Testing ecological theory using the information-theoretic approach: examples and cautionary results. Ecology 86, 2805–2814.
Crossref | GoogleScholarGoogle Scholar | Royama T. (1992). ‘Analytical Population Dynamics.’ (Chapman and Hall: London.)

Ruggiero L. F., Aubry K. B., Buskirk S. W., Koehler G. M., Krebs C. J., McKelvey K. S., and Squires J. R. (2000). The scientific basis for lynx conservation: qualified insights. In ‘Ecology and Conservation of Lynx in the United States.’ (Eds L. F. Ruggiero, K. B. Aubry, S. W. Buskirk, G. M. Koehler, C. J. Krebs, K. S. McKelvey, and J. R. Squires.) pp. 443–454. (University Press of Colorado: Boulder.)

Ruscoe, W. A. , Elkington, J. S. , Choquenot, D. , and Allen, R. B. (2005). Predation of beech seed by mice: effects of numerical and functional responses. Journal of Animal Ecology 74, 1005–1019.
Crossref | GoogleScholarGoogle Scholar | Sinclair A. R. E., and Krebs C. J. (2001). Trophic interactions, community organization, and the Kluane ecosystem. In ‘Ecosystem Dynamics of the Boreal Forest: the Kluane Project.’ (Eds C. J. Krebs, S. Boutin, and R. Boonstra.) pp. 25–48. (Oxford University Press: Oxford.)

Slough, B. G. , and Mowat, G. (1996). Lynx population dynamics in an untrapped refugium. Journal of Wildlife Management 60, 946–961.
Crossref | GoogleScholarGoogle Scholar |

Stenseth, N. C. , Falck, W. , Bjornstad, O. N. , and Krebs, C. J. (1997). Population regulation in snowshoe hare and Canadian lynx: asymmetric food web configurations between hare and lynx. Proceedings of the National Academy of Sciences of the United States of America 94, 5147–5152.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Turchin, P. , and Hanski, I. (2001). Contrasting alternative hypotheses about rodent cycles by translating them into parameterized models. Ecology Letters 4, 267–276.
Crossref | GoogleScholarGoogle Scholar |