Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Correcting wildlife counts using detection probabilities

Gary C. White
+ Author Affiliations
- Author Affiliations

Department of Fishery and Wildlife Biology, Colorado State University, Fort Collins, CO 80523, USA. Email: gwhite@cnr.colostate.edu

Wildlife Research 32(3) 211-216 https://doi.org/10.1071/WR03123
Submitted: 22 December 2003  Accepted: 3 March 2005   Published: 22 June 2005

Abstract

One of the most pervasive uses of indices of wildlife populations is uncorrected counts of animals. Two examples are the minimum number known alive from capture and release studies, and aerial surveys where the detection probability is not estimated from a sightability model, marked animals, or distance sampling. Both the mark–recapture and distance-sampling estimators are techniques to estimate the probability of detection of an individual animal (or cluster of animals), which is then used to correct a count of animals. However, often the number of animals in a survey is inadequate to compute an estimate of the detection probability and hence correct the count. Modern methods allow sophisticated modelling to estimate the detection probability, including incorporating covariates to provide additional information about the detection probability. Examples from both distance and mark–recapture sampling are presented to demonstrate the approach.


References

Alho, J. M. (1990). Logistic regression in capture–recapture models. Biometrics 46, 623–635.
PubMed | Buckland S. T., Anderson D. R., Burnham K. P., and Laake J. L. (1993). ‘Distance Sampling: Estimating Abundance of Biological Populations.’ (Chapman and Hall: New York.)

Buckland, S. T. , Burnham, K. P. , and Augustin, N. H. (1997). Model selection: an integral part of inference. Biometrics 53, 603–618.
Buckland S. T., Anderson D. R., Burnham K. P., Laake J. L., Borchers D. L., and Thomas L. (2001). Introduction to Distance Sampling.’ (Oxford University Press: London.)

Burnham, K. P. , and Anderson, D. R. (2001). Kullback–Leibler information theory as a basis for strong inference in ecological studies. Wildlife Research 28, 111–119.
Crossref | GoogleScholarGoogle Scholar | Burnham K. P., and Anderson D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-Theoretic Approach.’ 2nd edn. (Springer-Verlag: New York.)

Burnham, K. P. , White, G. C. , and Anderson, D. R. (1995). Model selection strategy in the analysis of capture–recapture data. Biometrics 51, 888–898.
Ganey J. L., Ackers S., Fonken P., Jenness J. S., Kessler C., Nodal K., Shaklee P., and Swarthout E. (1999). Monitoring populations of Mexican spotted owls in Arizona and New Mexico: 1999 Progress report. USDA Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, USA.

Ganey J. L., White G. C., Bowden D. C., and Franklin A. B. (2004). Evaluating methods for monitoring populations of Mexican spotted owls: a case study. In ‘Sampling Rare or Elusive Species: Concepts, Designs and Techniques for Estimating Population Parameters’. (Ed. W. L. Thompson.) pp. 337–385. (Island Press: Washington, DC.)

Huggins, R. M. (1989). On the statistical analysis of capture–recapture experiments. Biometrika 76, 133–140.
Thomas L., Laake J. L., Derry J. F., Buckland S. T., Borchers D. L., et al.(1998). Distance 3.5. Research Unit for Wildlife Population Assessment, University of St Andrews, UK. Available at http://www.ruwpa.st-and.ac.uk/distance/ [Verified 8 May 2005.]

White G. C. (2001). Statistical models: keys to understanding the natural world. In ’Modeling in Natural Resource Management’. (Eds T. M. Shenk and A. B. Franklin). pp. 35–56. (Island Press: Washington, DC.)

White, G. C. , and Burnham, K. P. (1999). Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120–138.Supplement
White G. C., Anderson D. R., Burnham K. P., and Otis D. L. (1982). Capture–recapture and removal methods for sampling closed populations. LA-8787-NERP, Los Alamos National Laboratory, Los Alamos, New Mexico, USA. 235 pp.

White G. C., Burnham K. P., and Anderson D. R. (2001). Advanced features of Program MARK. In ‘Wildlife, Land, and People: Priorities for the 21st Century. Proceedings of the Second International Wildlife Management Congress’. (Eds R. Field, R. J. Warren, H. Okarma, and P. R. Sievert.) pp. 368–377. (The Wildlife Society: Bethesda, MD.)