Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Post-nesting movements and feeding ground distribution by the hawksbill turtle (Eretmochelys imbricata) from rookeries in the Torres Strait

Claire E. Barr A , Mark Hamann https://orcid.org/0000-0003-4588-7955 A E , Takahiro Shimada https://orcid.org/0000-0002-3364-5169 B , Ian Bell C , Colin J. Limpus D and Janine Ferguson D
+ Author Affiliations
- Author Affiliations

A College of Science and Engineering, James Cook University, 1 James Cook Drive, Townsville, Qld 4811, Australia.

B School of Biological Sciences, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

C Department of Environment and Science, 21 Langton Street, Garbutt East, Qld 4814, Australia.

D Queensland Department of Environment and Science, 41 Boggo Road, Brisbane, Qld 4102, Australia.

E Corresponding author. Email: mark.hamann@jcu.edu.au

Wildlife Research 48(7) 598-608 https://doi.org/10.1071/WR20183
Submitted: 28 October 2020  Accepted: 29 March 2021   Published: 17 May 2021

Abstract

Context: Hawksbill sea turtles (Eretmochelys imbricata) are conservation-dependent species in many areas of the world. A key component to ensuring successful conservation initiatives for the species is understanding their distribution and habitat use, in particular, knowing the nesting sites, migration routes and foraging areas for each genetic stock, and how these might overlap with threats.

Aims: Investigate the post-nesting movements of hawksbill sea turtles nesting in the Torres Strait, including migration movements and foraging ground size and distribution.

Methods: Nine nesting hawksbill turtles of the north-eastern Australian genetic stock were satellite-tagged between the 2010 and 2019 nesting seasons for 182 ± 143 days (mean ± s.d.).

Key results: Three turtles continued to nest on adjacent islands before commencing their post-nesting migrations. From the nine tracked turtles, the following three migration movement strategies were identified: (1) direct migration between the nesting beach and foraging ground, (2) non-direct movements with a period of meandering, and (3) establishment of two foraging areas separated by direct movement pathways. Foraging grounds were distributed across the Torres Strait and north-eastern Australia and varied in size between 0.54 km2 and 3.31 km2 (95% UD). None of the turtles migrated outside of Australian waters.

Conclusions: The localisation of these movements and habitats within Australian waters provides a unique conservation opportunity, whereby protection efforts involve multiple life stages and potentially preserve turtles from multiple genetic stocks. The variety of inter-nesting, migration and home range strategies used by the tracked turtles in the present study highlight the broad scope of hawksbill movements.

Implications: Our findings are useful for the implementation of future marine conservation areas and shed light into the nesting, migratory and foraging behaviours of hawkbills from this genetic stock. An understanding of the movement tracks and habitats used by a genetic pool is essential for well grounded implementation of conservation areas and management regulations.

Keywords: nesting, foraging, migration, satellite-tagging.


References

Beggs, J. A., Horrocks, J. A., and Krueger, B. H. (2007). Increase in hawksbill sea turtle Eretmochelys imbricata nesting in Barbados, West Indies. Endangered Species Research 3, 159–168.
Increase in hawksbill sea turtle Eretmochelys imbricata nesting in Barbados, West Indies.Crossref | GoogleScholarGoogle Scholar |

Bell, I. (2013). Algivory in hawksbill turtles: Eretmochelys imbricata food selection within a foraging area on the northern Great Barrier Reef. Marine Ecology (Berlin) 34, 43–55.
Algivory in hawksbill turtles: Eretmochelys imbricata food selection within a foraging area on the northern Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Bell, I., and Jensen, M. P. (2018). Multinational genetic connectivity identified in western Pacific hawksbill turtles, Eretmochelys imbricata. Wildlife Research 45, 307–315.
Multinational genetic connectivity identified in western Pacific hawksbill turtles, Eretmochelys imbricata.Crossref | GoogleScholarGoogle Scholar |

Bell, I., and Pike, D. A. (2012). Somatic growth rates of hawksbill turtles Eretmochelys imbricata in a northern Great Barrier Reef foraging area. Marine Ecology Progress Series 446, 275–283.
Somatic growth rates of hawksbill turtles Eretmochelys imbricata in a northern Great Barrier Reef foraging area.Crossref | GoogleScholarGoogle Scholar |

Bell, I. P., Meager, J. J., Eguchi, T., Dobbs, K. A., Miller, J. D., and Hof, C. M. (2020). Twenty-eight years of decline: nesting population demographics and trajectory of the north-east Queensland endangered hawksbill turtle (Eretmochelys imbricata). Biological Conservation 241, 108376.
Twenty-eight years of decline: nesting population demographics and trajectory of the north-east Queensland endangered hawksbill turtle (Eretmochelys imbricata).Crossref | GoogleScholarGoogle Scholar |

Calenge, C. (2006). The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197, 516–519.
The package ‘adehabitat’ for the R software: a tool for the analysis of space and habitat use by animals.Crossref | GoogleScholarGoogle Scholar |

Carr, A. F., Hirth, H., and Ogren, L. (1966). The ecology and migration of sea turtles. 6, The hawksbill turtle in the Caribbean Sea. American Museum Novitates 2248, 1–29.

Cerritelli, G., Bianco, G., Santini, G., Broderick, A. C., Godley, B. J., Hays, G. C., Luschi, P., and Åkesson, S. (2019). Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles. Behavioral Ecology 30, 68–79.
Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles.Crossref | GoogleScholarGoogle Scholar |

Cuevas, E., Abreu-Grobois, F. A., Guzmán-Hernández, V., Liceaga-Correa, M. A., and van Dam, R. P. (2008). Post-nesting migratory movements of hawksbill turtles Eretmochelys imbricata in waters adjacent to the Yucatan Peninsula, Mexico. Endangered Species Research 10, 123–133.
Post-nesting migratory movements of hawksbill turtles Eretmochelys imbricata in waters adjacent to the Yucatan Peninsula, Mexico.Crossref | GoogleScholarGoogle Scholar |

De Silva, G. S. (1981). Turtle tagging and international tag returns for Sabah, East Malaysia. Sarawak Museum Journal 36, 263–271.

Dobbs, K. A., Miller, J. D., Limpus, C. J., and Landry, A. M. (1999). Hawksbill turtle, Eretmochelys imbricata, nesting at Milman Island, northern Great Barrier Reef, Australia. Chelonian Conservation and Biology 3, 344–361.

Dujon, A. M., Schofield, G., Lester, R. E., Esteban, N., and Hays, G. C. (2017). Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles. Marine Biology 164, 187.
Fastloc-GPS reveals daytime departure and arrival during long-distance migration and the use of different resting strategies in sea turtles.Crossref | GoogleScholarGoogle Scholar |

Esteban, N., Mortimer, J. A., and Hays, G. C. (2017). How numbers of nesting sea turtles can be overestimated by nearly a factor of two. Proceedings of the Royal Society B: Biological Sciences 284, 20162581.
| 28202810PubMed |

Foley, A. M., Schroeder, B. A., Hardy, R., MacPherson, S. L., Nicholas, M., and Coyne, M. S. (2013). Post nesting migratory behaviour of loggerhead sea turtles Caretta caretta from three Florida rookeries. Endangered Species Research 21, 129–142.
Post nesting migratory behaviour of loggerhead sea turtles Caretta caretta from three Florida rookeries.Crossref | GoogleScholarGoogle Scholar |

Gaos, A. R. (2011). Spatial Ecology of Hawksbill turtles (Eretmochelys imbricata) in the Eastern Pacific Ocean. M.Sc. Thesis, San Diego State University, CA, USA.

Gaos, A. R., Lewison, R. L., Yanez, I. L., Wallace, B. P., Liles, M. J., Nichols, W. J., Baquero, A., Hasbun, C. R., Vasquez, M., Urteaga, J., and Seminoff, J. A. (2012a). Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles. Biology Letters 8, 54–56.
Shifting the life-history paradigm: discovery of novel habitat use by hawksbill turtles.Crossref | GoogleScholarGoogle Scholar | 21880620PubMed |

Gaos, A. R., Lewison, R. L., Wallace, B. P., Yañez, I. L., Liles, M. J., Nichols, W. J., Baquero, A., Hasbún, C. R., Vasquez, M., Urteaga, J., and Seminoff, J. A. (2012b). Spatial ecology of critically endangered hawksbill turtles Eretmochelys imbricata: implications for management and conservation. Marine Ecology Progress Series 450, 181–194.
Spatial ecology of critically endangered hawksbill turtles Eretmochelys imbricata: implications for management and conservation.Crossref | GoogleScholarGoogle Scholar |

Godley, B. J., Richardson, S., Broderick, A. C., Coyne, M. S., Glen, F., and Hays, G. C. (2002). Long-term satellite telemetry of the movements and habitat utilisation by green turtles in the Mediterranean. Ecography 25, 352–362.
Long-term satellite telemetry of the movements and habitat utilisation by green turtles in the Mediterranean.Crossref | GoogleScholarGoogle Scholar |

Hamilton, R. J., Bird, T., Gerenio, C., Pita, J., Ramohia, P. C., Walter, R., Goerlich, C., and Limpus, C. (2015). Solomon Islands Largest Hawksbill Turtle Rookery shows signs of recovery after 150 years of excessive exploitation. PLoS One 10, e0121435.
Solomon Islands Largest Hawksbill Turtle Rookery shows signs of recovery after 150 years of excessive exploitation.Crossref | GoogleScholarGoogle Scholar | 25853880PubMed |

Hart, K. M., and Fujisaki, I. (2010). Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA. Endangered Species Research 11, 221–232.
Satellite tracking reveals habitat use by juvenile green sea turtles Chelonia mydas in the Everglades, Florida, USA.Crossref | GoogleScholarGoogle Scholar |

Hart, K. M., Sartain, A. R., Fujisaki, I., Pratt, H. L., Morley, D., and Feeley, M. W. (2012). Home range, habitat use, and migrations of hawksbill turtles tracked from Dry Tortugas National Park, Florida, USA. Marine Ecology Progress Series 457, 193–207.
Home range, habitat use, and migrations of hawksbill turtles tracked from Dry Tortugas National Park, Florida, USA.Crossref | GoogleScholarGoogle Scholar |

Hawkes, L. A., Tomás, J., Revuelta, O., León, Y. M., Blumenthal, J. M., Broderick, A. C., Fish, M., Raga, J. A., Witt, M. J., and Godley, B. J. (2012). Migratory patterns in hawksbill turtles described by satellite tracking. Marine Ecology Progress Series 461, 223–232.
Migratory patterns in hawksbill turtles described by satellite tracking.Crossref | GoogleScholarGoogle Scholar |

Hays, G. C., Puschi, P., Papi, F., Del Seppia, C., and Marsh, R. (1999). Changes in behaviour during the inter-nesting migration for Ascension Island green turtles. Marine Ecology Progress Series 189, 263–273.
Changes in behaviour during the inter-nesting migration for Ascension Island green turtles.Crossref | GoogleScholarGoogle Scholar |

Hays, G. C., Bailey, H., Bograd, S. J., Bowen, W. D., Campagna, C., Carmichael, R. H., Casale, P., Chiaradia, A., Costa, D. P., Cuevas, E., Nico de Bruyn, P. J., Dias, M. P., Duarte, C. M., Dunn, D. C., Dutton, P. H., Esteban, N., Friedlaender, A., Goetz, K. T., Godley, B. J., Halpin, P. N., Hamann, M., Hammerschlag, N., Harcourt, R., Harrison, A., Hazen, E. L., Heupel, M. R., Hoyt, E., Humphries, N. E., Kot, C. Y., Lea, J. S. E., Marsh, H., Maxwell, S. M., McMahon, C. R., Notarbartolo di Sciara, G., Palacios, D. M., Phillips, R. A., Righton, D., Schofield, G., Seminoff, J. A., Simpfendorfer, C. A., Sims, D. W., Takahashi, A., Tetley, M. J., Thums, M., Trathan, P. N., Villegas-Amtmann, S., Wells, R. S., Whiting, S. D., Wildermann, N. E., and Sequeira, A. M. M. (2019). Translating marine animal tracking data into conservation policy and management. Trends in Ecology & Evolution 34, 459–473.
Translating marine animal tracking data into conservation policy and management.Crossref | GoogleScholarGoogle Scholar |

Hoenner, X., Whiting, S., Hamann, M., Limpus, C. J., Hindell, M. A., and McMahon, C. R. (2016). High-resolution movements of critically endangered hawksbill turtles help elucidate conservation requirements in northern Australia. Marine and Freshwater Research 67, 1263–1278.
High-resolution movements of critically endangered hawksbill turtles help elucidate conservation requirements in northern Australia.Crossref | GoogleScholarGoogle Scholar |

Horrocks, J. A., Krueger, B. H., Fastigi, M., Pemberton, E. L., and Eckert, K. L. (2011). International movements of adult female hawksbill turtles (Eretmochelys imbricata): first results from the Caribbean’s Marine Turtle Tagging Centre. Chelonian Conservation and Biology 10, 18–25.
International movements of adult female hawksbill turtles (Eretmochelys imbricata): first results from the Caribbean’s Marine Turtle Tagging Centre.Crossref | GoogleScholarGoogle Scholar |

Houghton, J. D. R., Cedras, A., Myers, A. E., Liebsch, N., Metcalfe, J. D., Mortimer, J. A., and Hays, G. C. (2008). Measuring the state of consciousness in a free-living diving sea turtle. Journal of Experimental Marine Biology and Ecology 356, 115–120.
Measuring the state of consciousness in a free-living diving sea turtle.Crossref | GoogleScholarGoogle Scholar |

Klein, C. J., Beher, J., Chaloupka, M., Hamann, M., Limpus, C., and Possingham, H. P. (2017). Prioritization of marine turtle management projects: a protocol that accounts for threats to different life history stages. Conservation Letters 10, 547–554.
Prioritization of marine turtle management projects: a protocol that accounts for threats to different life history stages.Crossref | GoogleScholarGoogle Scholar |

Lee, P. L. M., and Hays, G. C. (2004). Polyandry in a marine turtle: females make the best of a bad job. Proceedings of the National Academy of Sciences of the United States of America 101, 6530–6535.
Polyandry in a marine turtle: females make the best of a bad job.Crossref | GoogleScholarGoogle Scholar |

Limpus, C. J. (1992). The hawksbill turtle, Eretmochelys imbricata, in Queensland: population structure within a southern Great Barrier Reef feeding ground. Wildlife Research 19, 489–505.
The hawksbill turtle, Eretmochelys imbricata, in Queensland: population structure within a southern Great Barrier Reef feeding ground.Crossref | GoogleScholarGoogle Scholar |

Limpus, C. J., and Choy, S. L. (2008). Growth studies of immature Eretmochelys imbricata. In ‘Australian hawksbill turtle population dynamics project’. (Eds C. J. Limpus and J. D. Miller.) pp. 125–130. (Queensland Environment Protection Agency: Brisbane, Qld, Australia.)

Limpus, C. J., and Limpus, D. J. (2008). Recruitment of Eretmochelys imbricata from the pelagic to the benthic feeding life history phase. In ‘Australian hawksbill turtle population dynamics project’. (Eds C. J. Limpus and J. D. Miller.) pp. 95–106. (Queensland Environment Protection Agency: Brisbane, Qld, Australia.)

Limpus, C. J., and Miller, J. D. (2008). ‘Australian Hawksbill Turtle Population Dynamics Project.’ (Queensland Environmental Protection Agency: Brisbane, Qld, Australia.)

Limpus, C. J., Miller, J. D., Bell, I. P., and Limpus, D. J. (2008). Eretmochelys imbricata foraging populations in eastern Australia. In ‘Australian hawksbill turtle population dynamics project’. (Eds C. J. Limpus and J. D. Miller.) pp. 107–115. (Queensland Environment Protection Agency: Brisbane, Qld, Australia.)

Luschi, P., Hays, G. C., Seppia, C. D., Marsh, R., and Papi, F. (1998). The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry. The Royal Society 265, 2279–2284.
The navigational feats of green sea turtles migrating from Ascension Island investigated by satellite telemetry.Crossref | GoogleScholarGoogle Scholar |

Marquez, R. M. (1990). Sea Turtles of the World. An Annotated and Illustrated Catalogue of Sea Turtle Species Known to Date. FAO Species Catalogue 125, 81.

Masumoto, Y. (2002). Effects of interannual variability in the eastern Indian Ocean on the Indonesian throughflow. Journal of Oceanography 58, 175–182.
Effects of interannual variability in the eastern Indian Ocean on the Indonesian throughflow.Crossref | GoogleScholarGoogle Scholar |

Miller, J., Dobbs, K., Limpus, C., Mattocks, N., and Landry, A. (1998). Long-distance migrations by the hawksbill turtle, Eretmochelys imbricata, from north-eastern Australia. Wildlife Research 25, 89–95.
Long-distance migrations by the hawksbill turtle, Eretmochelys imbricata, from north-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Miller, J. D., Limpus, C. J., and Bell, I. P. (2008). Nesting biology of Eretmochelys imbricata in the northern Great Barrier Reef. In ‘Australian Hawksbill Population Dynamics Study’. (Eds C. J. Limpus and J. D. Miller.) pp. 41–84. (Queensland Government, Environmental Protection Agency: Brisbane, Qld, Australia.)

Miller, R. L., Marsh, H., Cottrell, A., and Hamann, M. (2018). Protecting migratory species in the Australian marine environment: a cross-jurisdictional analysis of policy and management plans. Frontiers in Marine Science 5, 229.
Protecting migratory species in the Australian marine environment: a cross-jurisdictional analysis of policy and management plans.Crossref | GoogleScholarGoogle Scholar |

Miller, R. L., Marsh, H., Benham, C., and Hamann, M. (2020). Stakeholder engagement in the governance of marine migratory species: barriers and building blocks. Endangered Species Research 43, 1–19.
Stakeholder engagement in the governance of marine migratory species: barriers and building blocks.Crossref | GoogleScholarGoogle Scholar |

Mortimer, J. A., and Donnelly, M. (2008). Hawksbill turtle (Eretmochelys imbricata). In ‘The IUCN Red List of Threatened Species. Version 2012.2’. Available at https://www.iucnredlist.org/species/pdf/12881238/attachment [verified 28 April 2021].

Parmenter, C. J. (1983). Reproductive migration in the hawksbill turtle (Eretmochelys imbricata). Copeia 1983, 271–273.
Reproductive migration in the hawksbill turtle (Eretmochelys imbricata).Crossref | GoogleScholarGoogle Scholar |

Pilcher, N. J., Antonopoulou, M., Perry, L., Abdel-Moati, M. A., Al Abdessalaam, T. Z., Albeldawi, M., Al Ansi, M., Al-Mohannadi, S. F., Al Zahlawi, N., Baldwin, R., and Chikhi, A. (2014a). Identification of important sea turtle areas (ITAs) for hawksbill turtles in the Arabian region. Journal of Experimental Marine Biology and Ecology 460, 89–99.
Identification of important sea turtle areas (ITAs) for hawksbill turtles in the Arabian region.Crossref | GoogleScholarGoogle Scholar |

Pilcher, N. J., Perry, L., Antonopoulou, M., Abdel-Moati, M. A., Al Abdessalaam, T. Z., Albeldawi, M., Al Ansi, M., Al-Mohannadi, S. F., Baldwin, R., Chikhi, A., and Das, H. S. (2014b). Short-term behavioural responses to thermal stress by hawksbill turtles in the Arabian region. Journal of Experimental Marine Biology and Ecology 457, 190–198.
Short-term behavioural responses to thermal stress by hawksbill turtles in the Arabian region.Crossref | GoogleScholarGoogle Scholar |

Robins, J. B. (1995). Estimated catch and mortality of sea turtles from the east coast otter trawl fishery of Queensland, Australia. Biological Conservation 74, 157–167.
Estimated catch and mortality of sea turtles from the east coast otter trawl fishery of Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Robins, C. M., Goodspeed, A. M., Poiner, I. R., and Harch, B. D. (2002). ‘Monitoring the catch of turtles in the Northern Prawn Fishery.’ (Fisheries Research and Development Corporation: Canberra, ACT, Australia.)

Schofield, G., Dimadi, A., Fossette, S., Katselidis, K. A., Koutsoubas, D., Lilley, M. K. S., Luckman, A., Pantis, J. D., Karagouni, A. D., and Hays, G. C. (2013). Satellite tracking large numbers of individuals to infer population level dispersal and core areas for the protection of an endangered species. Diversity & Distributions 19, 834–844.
Satellite tracking large numbers of individuals to infer population level dispersal and core areas for the protection of an endangered species.Crossref | GoogleScholarGoogle Scholar |

Seminoff, J., Zárate, P., Coyne, M., Foley, D. G., Parker, D., Lyon, B. N., and Dutton, P. H. (2008). Post-nesting migrations of Galápagos green turtles Chelonia mydas in relation to oceanographic conditions: integrating satellite telemetry with remotely sensed ocean data. Endangered Species Research 4, 57–72.
Post-nesting migrations of Galápagos green turtles Chelonia mydas in relation to oceanographic conditions: integrating satellite telemetry with remotely sensed ocean data.Crossref | GoogleScholarGoogle Scholar |

Senko, J., Lopez-Castro, M. C., Koch, V., and Nichols, W. J. (2010). Immature East Pacific Green Turtles (Chelonia mydas) Use Multiple Foraging Areas off the Pacific Coast of Naja California Sur, Mexico: first evidence from mark-recapture data. Pacific Science 64, 125–130.
Immature East Pacific Green Turtles (Chelonia mydas) Use Multiple Foraging Areas off the Pacific Coast of Naja California Sur, Mexico: first evidence from mark-recapture data.Crossref | GoogleScholarGoogle Scholar |

Shillinger, G., Palacios, D., Bailey, H., Bograd, S. J., Swithenbank, A. M., Gaspar, P., Wallace, B. P., Spotila, J. R., Paladino, F. V., Piedra, R., Eckert, S. A., and Block, B. A. (2008). Persistent leatherback turtle migrations present opportunities for conservation. PLoS Biology 6, 1408–1416.
Persistent leatherback turtle migrations present opportunities for conservation.Crossref | GoogleScholarGoogle Scholar |

Shimada, T., Jones, R., Limpus, C., and Hamann, M. (2012). Improving data retention and home range estimates by data-driven screening. Marine Ecology Progress Series 457, 171–180.
Improving data retention and home range estimates by data-driven screening.Crossref | GoogleScholarGoogle Scholar |

Shimada, T., Jones, R., Limpus, C., and Hamann, M. (2016a). Time-restricted orientation of green turtles. Journal of Experimental Marine Biology and Ecology 484, 31–38.
Time-restricted orientation of green turtles.Crossref | GoogleScholarGoogle Scholar |

Shimada, T., Limpus, C., Jones, R., Hazel, J., Groom, R., and Hamann, M. (2016b). Sea turtles return home after intentional displacement from coastal foraging areas. Marine Biology 163, 8.
Sea turtles return home after intentional displacement from coastal foraging areas.Crossref | GoogleScholarGoogle Scholar |

Shimada, T., Jones, R., Limpus, C., Groom, R., and Hamann, M. (2016c). Long-term and seasonal patterns of sea turtle home ranges in warm coastal foraging habitats: implications for conservation. Marine Ecology Progress Series 562, 163–179.
Long-term and seasonal patterns of sea turtle home ranges in warm coastal foraging habitats: implications for conservation.Crossref | GoogleScholarGoogle Scholar |

Shimada, T., Limpus, C. J., Hamann, M., Bell, I., Esteban, N., Groom, R., and Hays, G. C. (2020). Fidelity to foraging sites after long migrations. Journal of Animal Ecology 89, 1008–1016.
Fidelity to foraging sites after long migrations.Crossref | GoogleScholarGoogle Scholar |

Troëng, S. H., Dutton, P., and Evans, D. (2005). Migration of hawksbill turtles Eretmochelys imbricata from Tortuguero, Costa Rica. Ecography 28, 394–402.
Migration of hawksbill turtles Eretmochelys imbricata from Tortuguero, Costa Rica.Crossref | GoogleScholarGoogle Scholar |

van Dam, R. P., and Diez, C. E. (1998). Home range of immature hawksbill turtles (Eretmochelys imbricata (Linnaeus)) at two Caribbean islands. Journal of Experimental Marine Biology and Ecology 220, 15–24.
Home range of immature hawksbill turtles (Eretmochelys imbricata (Linnaeus)) at two Caribbean islands.Crossref | GoogleScholarGoogle Scholar |

van Dam, R. P., Diez, C. E., Balazs, G. H., Colón Colón, L. A., McMillan, W. O., and Schroeder, B. (2008). Sex-specific migration patterns of hawksbill turtles breeding at Mona Island, Puerto Rico. Endangered Species Research 4, 85–94.
Sex-specific migration patterns of hawksbill turtles breeding at Mona Island, Puerto Rico.Crossref | GoogleScholarGoogle Scholar |

Whiting, S. D., Murray, W., Macrae, I., Thorn, R., Chongkin, M., and Kock, A. (2008). Non-migratory breeding by isolated green sea turtles (Chelonia mydas) in the Indian Ocean: biological and conservation implications. Naturwissenschaften 95, 355–360.
Non-migratory breeding by isolated green sea turtles (Chelonia mydas) in the Indian Ocean: biological and conservation implications.Crossref | GoogleScholarGoogle Scholar | 18046497PubMed |

Wildermann, N., Critchell, K., Fuentes, M. M., Limpus, C. J., Wolanski, E., and Hamann, M. (2017). Does behaviour affect the dispersal of flatback post-hatchlings in the Great Barrier Reef? Royal Society Open Science 4, 170164.
Does behaviour affect the dispersal of flatback post-hatchlings in the Great Barrier Reef?Crossref | GoogleScholarGoogle Scholar | 28573024PubMed |

Wolanski, E. (1993). Water circulation in the Gulf of Carpentaria. Journal of Marine Systems 4, 401–420.
Water circulation in the Gulf of Carpentaria.Crossref | GoogleScholarGoogle Scholar |

Wolanski, E., Ridd, P., and Inoue, M. (1988). Currents through Torres Strait. Journal of Physical Oceanography 18, 1535–1545.
Currents through Torres Strait.Crossref | GoogleScholarGoogle Scholar |

Wolanski, E., Lambrechts, J., Thomas, C., and Deleersnijder, E. (2013). The net water circulation through Torres strait. Continental Shelf Research 64, 66–74.
The net water circulation through Torres strait.Crossref | GoogleScholarGoogle Scholar |