Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Differing effects of productivity on home-range size and population density of a native and an invasive mammalian carnivore

Rowena P. Hamer https://orcid.org/0000-0002-9063-5426 A B E , Georgina E. Andersen A , Bronwyn A. Hradsky C , Shannon N. Troy A D , Riana Z. Gardiner A , Christopher N. Johnson A and Menna E. Jones A
+ Author Affiliations
- Author Affiliations

A School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, Tas. 7001, Australia.

B Tasmanian Land Conservancy, PO Box 2112, Lower Sandy Bay, Tas. 7005, Australia.

C School of Ecosystem and Forest Sciences, Building 122, University of Melbourne, Parkville, Vic. 3010, Australia.

D Department of Primary Industries, Parks, Water and the Environment, GPO Box 44, Hobart, Tas. 7001, Australia.

E Corresponding author. Email: rowena.hamer@utas.edu.au

Wildlife Research 49(2) 158-168 https://doi.org/10.1071/WR20134
Submitted: 20 August 2020  Accepted: 18 June 2021   Published: 9 December 2021

Abstract

Context: Home-range size and population density characteristics are crucial information in the design of effective wildlife management, whether for conservation or control, but can vary widely among populations of the same species.

Aims: We investigate the influence of site productivity on home-range size and population density for Australian populations of the native, threatened spotted-tailed quoll (Dasyurus maculatus) and the alien and highly successful feral cat (Felis catus).

Methods: We use live trapping and fine-scale GPS tracking to determine the home-range size and population density for both species across five sites in Tasmania. Using these data, as well as published estimates for both species from across Australia, we model how these parameters change in response to productivity gradients. We also use the telemetry data to examine the energetic costs of increasing home-range size for both species.

Key results: For both species, decreasing site productivity correlates with lower population density, and in spotted-tailed quolls and female feral cats, it also correlates with larger home-range sizes. However, the relative magnitude of these changes is different. Feral cats show smaller increases in home-range size but larger decreases in population density relative to spotted-tailed quolls. Our results suggest that these differences may be because increases in home-range size are more costly for feral cats, demonstrated by larger increases in nightly movement for the same increase in home-range area.

Conclusions: We suggest that knowledge of both home-range size and population density is needed to accurately determine how species respond to habitat productivity, and inform effective management across their geographic range.

Implications: These results have clear management implications; for example, in our low-rainfall sites, an adult female spotted-tailed quoll requires up to five times the amount of habitat expected on the basis of previous studies, thus dramatically increasing the costs of conservation programs for this threatened native species. Conversely, productivity-driven differences of up to four-fold in feral cat population density would influence the resources required for successful control programs of this invasive species.

Keywords: carnivore, home-range variation, population density, productivity gradient.


References

Andersen, G. E., Johnson, C. N., Barmuta, L. A., and Jones, M. E. (2017). Dietary partitioning of Australia’s two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range. PLoS One 12, e0188529.
Dietary partitioning of Australia’s two marsupial hypercarnivores, the Tasmanian devil and the spotted-tailed quoll, across their shared distributional range.Crossref | GoogleScholarGoogle Scholar | 29176811PubMed |

Andersen, G. E., Johnson, C. N., and Jones, M. E. (2020). Space use and temporal partitioning of sympatric Tasmanian devils and spotted-tailed quolls. Austral Ecology , .
Space use and temporal partitioning of sympatric Tasmanian devils and spotted-tailed quolls.Crossref | GoogleScholarGoogle Scholar |

Barton, K. A. (2018). MuMIn: Multi-Model Inference. R Package version 1.42.1. Available at https://CRAN.R-project.org/package=MuMIn.

Bates, D., Mächler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 48.
Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |

Bengsen, A. J., Butler, J. A., and Masters, P. (2012). Applying home-range and landscape-use data to design effective feral-cat control programs. Wildlife Research 39, 258–265.
Applying home-range and landscape-use data to design effective feral-cat control programs.Crossref | GoogleScholarGoogle Scholar |

Bengsen, A. J., Algar, D., Ballard, G., Buckmaster, T., Comer, S., Fleming, P. J. S., Friend, J. A., Johnston, M., McGregor, H., Moseby, K., and Zewe, F. (2016). Feral cat home‐range size varies predictably with landscape productivity and population density. Journal of Zoology 298, 112–120.
Feral cat home‐range size varies predictably with landscape productivity and population density.Crossref | GoogleScholarGoogle Scholar |

BOM (2019). ‘Climate Data Online, Monthly Climate Statistics from station numbers 091223, 93053, 093033, 091022 and 093014.’ (Australian Government Bureau of Meteorology.) Available at http://www.bom.gov.au/climate/data/.

Borchers, D. L., and Efford, M. G. (2008). Spatially explicit maximum likelihood methods for capture–recapture studies. Biometrics 64, 377–385.
Spatially explicit maximum likelihood methods for capture–recapture studies.Crossref | GoogleScholarGoogle Scholar | 17970815PubMed |

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and Multimodel Inference: a Practical Information-theoretic Approach.’ 2nd edn. (Springer-Verlag: New York, NY, USA.)

Burnham, K. P., Anderson, D. R., and Huyvaert, K. P. (2011). AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology 65, 23–35.
AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons.Crossref | GoogleScholarGoogle Scholar |

Burt, W. H. (1943). Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24, 346–352.
Territoriality and home range concepts as applied to mammals.Crossref | GoogleScholarGoogle Scholar |

Calenge, C. (2006). The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological Modelling 197, 516–519.
The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals.Crossref | GoogleScholarGoogle Scholar |

Carr, G. M., and Macdonald, D. W. (1986). The sociality of solitary foragers: a model based on resource dispersion. Animal Behaviour 34, 1540–1549.
The sociality of solitary foragers: a model based on resource dispersion.Crossref | GoogleScholarGoogle Scholar |

Claridge, A. W., Paull, D., Dawson, J., Mifsud, G., Murray, A. J., Poore, R., and Saxon, M. J. (2005). Home range of the spotted-tailed quoll (Dasyurus maculatus), a marsupial carnivore, in a rainshadow woodland. Wildlife Research 32, 7–14.
Home range of the spotted-tailed quoll (Dasyurus maculatus), a marsupial carnivore, in a rainshadow woodland.Crossref | GoogleScholarGoogle Scholar |

Denny, E., Yakovlevich, P., Eldridge, M. D. B., and Dickman, C. (2002). Social and genetic analysis of a population of free-living cats (Felis catus L.) exploiting a resource-rich habitat. Wildlife Research 29, 405–413.
Social and genetic analysis of a population of free-living cats (Felis catus L.) exploiting a resource-rich habitat.Crossref | GoogleScholarGoogle Scholar |

Dickman, C. R., and Newsome, T. M. (2015). Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management. Applied Animal Behaviour Science 173, 76–87.
Individual hunting behaviour and prey specialisation in the house cat Felis catus: implications for conservation and management.Crossref | GoogleScholarGoogle Scholar |

Doherty, T. S., Bengsen, A. J., and Davis, R. A. (2014). A critical review of habitat use by feral cats and key directions for future research and management. Wildlife Research 41, 435–446.
A critical review of habitat use by feral cats and key directions for future research and management.Crossref | GoogleScholarGoogle Scholar |

Duncan, C., Nilsen, E. B., Linnell, J. D. C., and Pettorelli, N. (2015). Life-history attributes and resource dynamics determine intraspecific home-range sizes in Carnivora. Remote Sensing in Ecology and Conservation 1, 39–50.
Life-history attributes and resource dynamics determine intraspecific home-range sizes in Carnivora.Crossref | GoogleScholarGoogle Scholar |

Efford, M. (2019). secr: spatially explicit capture-recapture models. R package version 3.2.0. Available at https://CRAN.R-project.org/package=secr.

Fagan, W. F., and Lutscher, F. (2006). Average dispersal success: linking home range, dispersal, and metapopulation dynamics to reserve design. Ecological Applications 16, 820–828.
Average dispersal success: linking home range, dispersal, and metapopulation dynamics to reserve design.Crossref | GoogleScholarGoogle Scholar | 16711065PubMed |

Fieberg, J., and Börger, L. (2012). Could you please phrase ‘home range’ as a question? Journal of Mammalogy 93, 890–902.
Could you please phrase ‘home range’ as a question?Crossref | GoogleScholarGoogle Scholar |

Gardiner, R. Z. (2018). Understanding the response of a critical weight range mammal to habitat loss and fragmentation in the Midlands bioregion, Tasmania. Ph.D. Thesis. University of Tasmania, Hobart, Tas., Australia.

Glen, A. S., and Dickman, C. R. (2006). Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia. Journal of Zoology 268, 347–354.
Home range, denning behaviour and microhabitat use of the carnivorous marsupial Dasyurus maculatus in eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Glen, A. S., Pennay, M., Dickman, C. R., Wintle, B. A., and Firestone, K. B. (2011). Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia. Austral Ecology 36, 290–296.
Diets of sympatric native and introduced carnivores in the Barrington Tops, eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Hamer, R. P., Gardiner, R. Z., Proft, K. M., Johnson, C. N., and Jones, M. E. (2021). A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey. Proceedings. Biological Sciences 288, 20201194.
A triple threat: high population density, high foraging intensity and flexible habitat preferences explain high impact of feral cats on prey.Crossref | GoogleScholarGoogle Scholar | 33402069PubMed |

Haskell, J. P., Ritchie, M. E., and Olff, H. (2002). Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges. Nature 418, 527–530.
Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges.Crossref | GoogleScholarGoogle Scholar | 12152078PubMed |

Hollings, T., Jones, M., Mooney, N., and McCallum, H. (2014). Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian Devil. Conservation Biology 28, 63–75.
Trophic cascades following the disease-induced decline of an apex predator, the Tasmanian Devil.Crossref | GoogleScholarGoogle Scholar | 24024987PubMed |

Huxman, T. E., Smith, M. D., Fay, P. A., Knapp, A. K., Shaw, M. R., Loik, M. E., Smith, S. D., Tissue, D. T., Zak, J. C., Weltzin, J. F., Pockman, W. T., Sala, O. E., Haddad, B. M., Harte, J., Koch, G. W., Schwinning, S., Small, E. E., and Williams, D. G. (2004). Convergence across biomes to a common rain-use efficiency. Nature 429, 651.
Convergence across biomes to a common rain-use efficiency.Crossref | GoogleScholarGoogle Scholar | 15190350PubMed |

Jetz, W., Carbone, C., Fulford, J., and Brown, J. H. (2004). The scaling of animal space use. Science 306, 266–268.
The scaling of animal space use.Crossref | GoogleScholarGoogle Scholar | 15472074PubMed |

Johnson, D. D. P., Kays, R., Blackwell, P. G., and Macdonald, D. W. (2002). Does the resource dispersion hypothesis explain group living? Trends in Ecology & Evolution 17, 563–570.
Does the resource dispersion hypothesis explain group living?Crossref | GoogleScholarGoogle Scholar |

Jones, M. E., and Davidson, N. (2016). Applying an animal-centric approach to improve ecological restoration. Restoration Ecology 24, 836–842.
Applying an animal-centric approach to improve ecological restoration.Crossref | GoogleScholarGoogle Scholar |

Kelt, D. A., and Van Vuren, D. (1999). Energetic constraints and the relationship between body size and home range area in mammals. Ecology 80, 337–340.
Energetic constraints and the relationship between body size and home range area in mammals.Crossref | GoogleScholarGoogle Scholar |

Laver, P. N., and Kelly, M. J. (2008). A critical review of home range studies. The Journal of Wildlife Management 72, 290–298.
A critical review of home range studies.Crossref | GoogleScholarGoogle Scholar |

Legge, S., Murphy, B. P., McGregor, H., Woinarski, J. C. Z., Augusteyn, J., Ballard, G., Baseler, M., Buckmaster, T., Dickman, C. R., Doherty, T., Edwards, G., Eyre, T., Fancourt, B. A., Ferguson, D., Forsyth, D. M., Geary, W. L., Gentle, M., Gillespie, G., Greenwood, L., Hohnen, R., Hume, S., Johnson, C. N., Maxwell, M., McDonald, P. J., Morris, K., Moseby, K., Newsome, T., Nimmo, D., Paltridge, R., Ramsey, D., Read, J., Rendall, A., Rich, M., Ritchie, E., Rowland, J., Short, J., Stokeld, D., Sutherland, D. R., Wayne, A. F., Woodford, L., and Zewe, F. (2017). Enumerating a continental-scale threat: how many feral cats are in Australia? Biological Conservation 206, 293–303.
Enumerating a continental-scale threat: how many feral cats are in Australia?Crossref | GoogleScholarGoogle Scholar |

Linnell, J. D. C., Andersen, R., Kvam, T., Andrén, H., Liberg, O., Odden, J., and Moa, P. F. (2001). Home range size and choice of management strategy for lynx in Scandinavia. Environmental Management 27, 869–879.
Home range size and choice of management strategy for lynx in Scandinavia.Crossref | GoogleScholarGoogle Scholar |

Mattisson, J., Sand, H., Wabakken, P., Gervasi, V., Liberg, O., Linnell, J. D. C., Rauset, G. R., and Pedersen, H. C. (2013). Home range size variation in a recovering wolf population: evaluating the effect of environmental, demographic, and social factors. Oecologia 173, 813–825.
Home range size variation in a recovering wolf population: evaluating the effect of environmental, demographic, and social factors.Crossref | GoogleScholarGoogle Scholar | 23636461PubMed |

Mazerolle, M. J. (2017). AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.1-1. Available at https://cran.r-project.org/package=AICcmodavg.

McLoughlin, P. D., and Ferguson, S. H. (2000). A hierarchical pattern of limiting factors helps explain variation in home range size. Ecoscience 7, 123–130.
A hierarchical pattern of limiting factors helps explain variation in home range size.Crossref | GoogleScholarGoogle Scholar |

Mcloughlin, P. D., Ferguson, S. H., and Messier, F. (2000). Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations. Evolutionary Ecology 14, 39–60.
Intraspecific variation in home range overlap with habitat quality: a comparison among brown bear populations.Crossref | GoogleScholarGoogle Scholar |

McNab, B. K. (1963). Bioenergetics and the Determination of Home Range Size. American Naturalist 97, 133–140.
Bioenergetics and the Determination of Home Range Size.Crossref | GoogleScholarGoogle Scholar |

Moilanen, A., Franco, A. M. A., Early, R. I., Fox, R., Wintle, B., and Thomas, C. D. (2005). Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proceedings. Biological Sciences 272, 1885–1891.
Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems.Crossref | GoogleScholarGoogle Scholar | 16191593PubMed |

Moseby, K. E., Peacock, D. E., and Read, J. L. (2015). Catastrophic cat predation: a call for predator profiling in wildlife protection programs. Biological Conservation 191, 331–340.
Catastrophic cat predation: a call for predator profiling in wildlife protection programs.Crossref | GoogleScholarGoogle Scholar |

Nakagawa, S., Johnson, P. C. D., and Schielzeth, H. (2017). The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. Journal of the Royal Society, Interface 14, 20170213.
The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded.Crossref | GoogleScholarGoogle Scholar | 28904005PubMed |

Newsome, T. M., Dellinger, J. A., Pavey, C. R., Ripple, W. J., Shores, C. R., Wirsing, A. J., and Dickman, C. R. (2015). The ecological effects of providing resource subsidies to predators. Global Ecology and Biogeography 24, 1–11.
The ecological effects of providing resource subsidies to predators.Crossref | GoogleScholarGoogle Scholar |

Nilsen, E. B., Herfindal, I., and Linnell, J. D. C. (2005). Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity? Ecoscience 12, 68–75.
Can intra-specific variation in carnivore home-range size be explained using remote-sensing estimates of environmental productivity?Crossref | GoogleScholarGoogle Scholar |

Ofstad, E. G., Herfindal, I., Solberg, E. J., and Sæther, B.-E. (2016). Home ranges, habitat and body mass: simple correlates of home range size in ungulates. Proceedings. Biological Sciences 283, 20161234.
Home ranges, habitat and body mass: simple correlates of home range size in ungulates.Crossref | GoogleScholarGoogle Scholar | 28003441PubMed |

Pearce, F., Carbone, C., Cowlishaw, G., and Isaac, N. J. B. (2013). Space-use scaling and home range overlap in primates. Proceedings. Biological Sciences 280, 20122122.
Space-use scaling and home range overlap in primates.Crossref | GoogleScholarGoogle Scholar | 23193124PubMed |

R Core Team (2018). ‘R: a language and environment for statistical computing.’ (R Foundation for Statistical Computing: Vienna, Austria.) Available at https://www.R-project.org/.

Rees, M. W., Pascoe, J. H., Wintle, B. A., Le Pla, M., Birnbaum, E. K., and Hradsky, B. A. (2019). Unexpectedly high densities of feral cats in a rugged temperate forest. Biological Conservation 239, 108287.
Unexpectedly high densities of feral cats in a rugged temperate forest.Crossref | GoogleScholarGoogle Scholar |

Šálek, M., Drahníková, L., and Tkadlec, E. (2015). Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient. Mammal Review 45, 1–14.
Changes in home range sizes and population densities of carnivore species along the natural to urban habitat gradient.Crossref | GoogleScholarGoogle Scholar |

Schradin, C., Schmohl, G., Rödel, H. G., Schoepf, I., Treffler, S. M., Brenner, J., Bleeker, M., Schubert, M., König, B., and Pillay, N. (2010). Female home range size is regulated by resource distribution and intraspecific competition: a long-term field study. Animal Behaviour 79, 195–203.
Female home range size is regulated by resource distribution and intraspecific competition: a long-term field study.Crossref | GoogleScholarGoogle Scholar |

Sexton, J. P., McIntyre, P. J., Angert, A. L., and Rice, K. J. (2009). Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics 40, 415–436.
Evolution and ecology of species range limits.Crossref | GoogleScholarGoogle Scholar |

Signer, J., and Balkenhol, N. (2015). Reproducible home ranges (rhr): a new, user-friendly R package for analyses of wildlife telemetry data Wildlife Society Bulletin 39, 358–363.
Reproducible home ranges (rhr): a new, user-friendly R package for analyses of wildlife telemetry dataCrossref | GoogleScholarGoogle Scholar |

Trewhella, W. J., Harris, S., and McAllister, F. E. (1988). Dispersal distance, home-range size and population density in the red fox (Vulpes vulpes): a quantitative analysis. Journal of Applied Ecology 25, 423–434.
Dispersal distance, home-range size and population density in the red fox (Vulpes vulpes): a quantitative analysis.Crossref | GoogleScholarGoogle Scholar |

Troy, S. N. (2014). Spatial Ecology of the Tasmanian Spotted-tailed Quoll. Ph.D. Thesis. (University of Tasmania: Hobart, Tas., Australia.)

Vanderwal, J. (2012). ‘All future climate layers for Australia – 5km resolution.’ (Ed. J. C. University.) (Biodiversity and Climate Change Virtual Lab: Canberra, ACT, Australia.)

Walton, Z., Samelius, G., Odden, M., and Willebrand, T. (2017). Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration. PLoS One 12, e0175291.
Variation in home range size of red foxes Vulpes vulpes along a gradient of productivity and human landscape alteration.Crossref | GoogleScholarGoogle Scholar | 28384313PubMed |

Woinarski, J. C. Z., Woolley, L. A., Garnett, S. T., Legge, S. M., Murphy, B. P., Lawes, M. J., Comer, S., Dickman, C. R., Doherty, T. S., Edwards, G., Nankivill, A., Palmer, R., and Paton, D. (2017). Compilation and traits of Australian bird species killed by cats. Biological Conservation 216, 1–9.
Compilation and traits of Australian bird species killed by cats.Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Murphy, B. P., Palmer, R., Legge, S. M., Dickman, C. R., Doherty, T. S., Edwards, G., Nankivell, A., Read, J. L., and Stokeld, D. (2018). How many reptiles are killed by cats in Australia? Wildlife Research 45, 247–266.
How many reptiles are killed by cats in Australia?Crossref | GoogleScholarGoogle Scholar |

Woinarski, J. C. Z., Legge, S. M., Woolley, L. A., Palmer, R., Dickman, C. R., Augusteyn, J., Doherty, T. S., Edwards, G., Geyle, H., McGregor, H., Riley, J., Turpin, J., and Murphy, B. P. (2020). Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed. Wildlife Research 47, 580–588.
Predation by introduced cats Felis catus on Australian frogs: compilation of species records and estimation of numbers killed.Crossref | GoogleScholarGoogle Scholar |

Woolley, L.-A., Geyle, H. M., Murphy, B. P., Legge, S. M., Palmer, R., Dickman, C. R., Augusteyn, J., Comer, S., Doherty, T. S., Eager, C., Edwards, G., Harley, D. K. P., Leiper, I., McDonald, P. J., McGregor, H. W., Moseby, K. E., Myers, C., Read, J. L., Riley, J., Stokeld, D., Turpin, J. M., and Woinarski, J. C. Z. (2019). Introduced cats Felis catus eating a continental fauna: inventory and traits of Australian mammal species killed. Mammal Review 49, 354–368.
Introduced cats Felis catus eating a continental fauna: inventory and traits of Australian mammal species killed.Crossref | GoogleScholarGoogle Scholar |

Woolley, L.-A., Murphy, B. P., Geyle, H. M., Legge, S. M., Palmer, R. A., Dickman, C. R., Doherty, T. S., Edwards, G. P., Riley, J., Turpin, J. M., and Woinarski, J. C. Z. (2020). Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia. Wildlife Research 47, 610–623.
Introduced cats eating a continental fauna: invertebrate consumption by feral cats (Felis catus) in Australia.Crossref | GoogleScholarGoogle Scholar |

Yang, Y., Fang, J., Ma, W., and Wang, W. (2008). Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophysical Research Letters 35, L23710.
Relationship between variability in aboveground net primary production and precipitation in global grasslands.Crossref | GoogleScholarGoogle Scholar |