Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Lowland tapir exposure to pesticides and metals in the Brazilian Cerrado

Emília P. Medici https://orcid.org/0000-0003-1944-9249 A B C F , Renata Carolina Fernandes-Santos A B , Caroline Testa-José A , Antonio Francisco Godinho D and Anne-Fleur Brand https://orcid.org/0000-0002-1779-8691 E
+ Author Affiliations
- Author Affiliations

A Lowland Tapir Conservation Initiative (LTCI), Instituto de Pesquisas Ecológicas (IPÊ), Campo Grande, Mato Grosso do Sul, Brazil.

B IUCN SSC Tapir Specialist Group (TSG).

C Escola Superior de Conservação Ambiental e Sustentabilidade (ESCAS/IPÊ), Nazaré Paulista, São Paulo, Brazil.

D Centro de Assistência Toxicológica (CEATOX), Instituto de Biociências de Botucatu, Universidade Estadual Paulista (UNESP) – Campus de Botucatu, São Paulo, Brazil.

E Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.

F Corresponding author. Email: medici@ipe.org.br

Wildlife Research 48(5) 393-403 https://doi.org/10.1071/WR19183
Submitted: 1 October 2019  Accepted: 14 November 2020   Published: 15 February 2021

Abstract

Context: The Cerrado is a Global Biodiversity Hotspot as well as Brazil’s main frontier for large-scale agriculture and livestock production, making it one of the most threatened biomes in the country. Brazil is one of the biggest consumers of pesticides in the world and allows the use of chemicals that are banned in many other countries due to their adverse health effects in a wide range of species, including humans.

Aims: This study aimed to assess pesticide and metal exposure of the lowland tapir – a threatened, large herbivorous mammal – to support future studies of the role of these chemicals in tapir health, survivorship, and population viability.

Methods: Foot pad, proboscis, stomach contents, liver, bone, and nail samples were obtained from tapir carcasses found along highways (n = 87). (i) Atomic absorption spectrophotometry (AAS) was used to detect metals in bone, nail and liver tissue; (ii) gas chromatography – nitrogen phosphorous detector (GC-NPD) to detect organophosphates in liver and skin; and (iii) high performance liquid chromatography – ultraviolet (HPLC-UV) to detect pyrethroids and carbamates in stomach contents.

Key results: Two carbamates (aldicarb and carbaryl), three organophosphates (diazinon, malathion, and mevinphos), two pyrethroids (deltamethrin and permethrin), and two toxic metals (cadmium and lead) were detected in different tapir tissue samples, some at concentrations high enough to cause adverse health effects. In 90% of roadkill tapirs that were subjected to a full post-mortem examination (n = 25), macroscopic alterations of liver and/or kidney tissue were observed.

Conclusions: This study provides the first report to date of the detection of pesticides and metals in lowland tapirs.

Implications: Some of the reported pesticide concentrations exceed environmental safety thresholds. Consequently, results from this study raise concerns over potential adverse health effects in tapirs that could lead to population level impacts, thus requiring further investigation.

Keywords: anthropogenic impacts, conservation, threatened species, toxicology.


References

Athanasopoulos, N. (1989). Flame Methods Manual for Atomic Absorption (GBC Scientific Equipment Pty. Ltd., Melbourne, Vic., Australia.)

Bassett, J., Denney, R. C., Jeffery, G. H., and Mendhan, J. (Eds.) (1981). ‘Vogel: Análise Inorgânica Quantitativa.’ (Guanabara Dois: Rio de Janeiro, Brazil.)

Bombardi, L. M. (Ed.) (2017). ‘Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia.’ (Faculdade de Filosofia, Letras e Ciências Humanas – Universidade de São Paulo: São Paulo, Brazil.)

Brooks, J. W. (2016). Postmortem Changes in Animal Carcasses and Estimation of the Postmortem Interval. Veterinary Pathology 53, 929–940.
Postmortem Changes in Animal Carcasses and Estimation of the Postmortem Interval.Crossref | GoogleScholarGoogle Scholar | 26945004PubMed |

Carneiro, F. F., Rigotto, R. M., Silva-Augusto, L. G., Friedrich, K., and Búrigo, A. C. (Eds.) (2015). ‘Dossiê ABRASCO – Associação Brasileira de Saúde Coletiva: Um Alerta sobre os Impactos dos Agrotóxicos na Saúde.’ (Escola Politécnica de Saúde Joaquim Venâncio: Rio de Janeiro; Expressão Popular: São Paulo, Brazil.)

Curi, N. H. D. A., Brait, C. H. H., Filho, N. R. A., and Talamoni, S. A. (2012). Heavy metals in hair of wild canids from the Brazilian Cerrado. Biological Trace Element Research 147, 97–102.
Heavy metals in hair of wild canids from the Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar |

Dalefield, R. (Ed.) (2017). Insecticides and Acaricides. In ‘Veterinary Toxicology for Australia and New Zealand’. pp. 87–109. (Elsevier.)

de Siqueira, A., Salvagni, F. A., Yoshida, A. S., Gonçalves-Junior, V., Calefi, A. S., Fukushima, A. R., de Souza Spinosa, H., and Maiorka, P. C. (2015). Poisoning of cats and dogs by the carbamate pesticides aldicarb and carbofuran. Research in Veterinary Science 102, 142–149.
Poisoning of cats and dogs by the carbamate pesticides aldicarb and carbofuran.Crossref | GoogleScholarGoogle Scholar | 26412534PubMed |

Dierenfeld, E. S., Atkinson, S., Craig, A. M., Walker, K. C., Streich, W. J., and Clauss, M. (2005). Mineral concentrations in serum/plasma and liver tissue of captive and free‐ranging rhinoceros species. Zoo Biology 24, 51–72.
Mineral concentrations in serum/plasma and liver tissue of captive and free‐ranging rhinoceros species.Crossref | GoogleScholarGoogle Scholar |

Elinder, C. G., Nordberg, M., Palm, B., and Piscator, M. (1981). Cadmium, zinc, and copper in horse liver and in horse liver metallothionein: comparisons with kidney cortex. Environmental Research 26, 22–32.
Cadmium, zinc, and copper in horse liver and in horse liver metallothionein: comparisons with kidney cortex.Crossref | GoogleScholarGoogle Scholar | 7297531PubMed |

Fenoglio, C., Boncompagni, E., Fasola, M., Gandini, C., Comizzoli, S., Milanesi, G., and Barni, S. (2005). Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog Rana esculenta. Ecotoxicology and Environmental Safety 60, 259–268.
Effects of environmental pollution on the liver parenchymal cells and Kupffer-melanomacrophagic cells of the frog Rana esculenta.Crossref | GoogleScholarGoogle Scholar | 15590002PubMed |

Fernandes-Santos, R. C., Medici, E. P., Testa-José, C., and Micheletti, T. (2020). Health assessment of wild lowland tapirs (Tapirus terrestris) in the highly threatened Cerrado biome, Brazil. Journal of Wildlife Diseases 56, 34–46.
Health assessment of wild lowland tapirs (Tapirus terrestris) in the highly threatened Cerrado biome, Brazil.Crossref | GoogleScholarGoogle Scholar | 31526278PubMed |

Galloway, T., and Handy, R. (2003). Immunotoxicity of organophosphorous pesticides. Ecotoxicology (London, England) 12, 345–363.
Immunotoxicity of organophosphorous pesticides.Crossref | GoogleScholarGoogle Scholar |

Gupta, R. C. (Ed.) (2012). ‘Veterinary Toxicology: Basic and Clinical Principles.’ (Academic Press: USA.)

Hernández-Divers, S. M., Aguilar, R., Leandro-Loria, D., and Foerster, C. R. (2005). Health evaluation of a radiocollared population of free-ranging Baird’s tapirs (Tapirus bairdii) in Costa Rica. Journal of Zoo and Wildlife Medicine 36, 176–187.
Health evaluation of a radiocollared population of free-ranging Baird’s tapirs (Tapirus bairdii) in Costa Rica.Crossref | GoogleScholarGoogle Scholar | 17323556PubMed |

International Union for the Conservation of Nature (IUCN) (2019). Red List of Threatened Species. Available at www.iucnredlist.org [verified September 2020].

Jirtle, R. L., and Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews. Genetics 8, 253–262.
Environmental epigenomics and disease susceptibility.Crossref | GoogleScholarGoogle Scholar | 17363974PubMed |

Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., and Bolton, E. E. (2019). PubChem 2019 update: improved access to chemical data. Nucleic Acids Research 47, D1102–D1109.
PubChem 2019 update: improved access to chemical data.Crossref | GoogleScholarGoogle Scholar | 30371825PubMed |

Köprücü, O. S., Köprücü, K., Ener Ural, M. S., Ispir, Ü., and Pala, M. (2006). Acute toxicity of organophosphorous pesticide diazinon and its effects on behavior and some hematological parameters of fingerling European catfish (Silurus glanis L.). Pesticide Biochemistry and Physiology 86, 99–105.
Acute toxicity of organophosphorous pesticide diazinon and its effects on behavior and some hematological parameters of fingerling European catfish (Silurus glanis L.).Crossref | GoogleScholarGoogle Scholar |

Kostka, G., Palut, D., Kopeć-Szlęzak, J., and Ludwicki, J. K. (1999). Early hepatic changes in rats induced by permethrin in comparison with DDT. Toxicology 142, 135–143.
Early hepatic changes in rats induced by permethrin in comparison with DDT.Crossref | GoogleScholarGoogle Scholar |

Krief, S., Berny, P., Gumisiriza, F., Gross, R., Demeneix, B., Fini, J. B., Chapman, C. A., Chapman, L. J., Seguya, A., and Wasswa, J. (2017). Agricultural expansion as risk to endangered wildlife: Pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. The Science of the Total Environment 598, 647–656.
Agricultural expansion as risk to endangered wildlife: Pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia.Crossref | GoogleScholarGoogle Scholar | 28454037PubMed |

Laabs, V., Amelung, W., Pinto, A., Altstaedt, A., and Zech, W. (2000). Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrado. Chemosphere 41, 1441–1449.
Leaching and degradation of corn and soybean pesticides in an Oxisol of the Brazilian Cerrado.Crossref | GoogleScholarGoogle Scholar | 11057581PubMed |

Laabs, V., Amelung, W., Pinto, A., and Zech, W. (2002). Fate of pesticides in tropical soils of Brazil under field conditions. Journal of Environmental Quality 31, 256–268.
Fate of pesticides in tropical soils of Brazil under field conditions.Crossref | GoogleScholarGoogle Scholar | 11837430PubMed |

Liang, Y. J., Wang, H. P., Long, D. X., Li, W., and Wu, Y. J. (2013). A metabonomic investigation of the effects of 60 days exposure of rats to two types of pyrethroid insecticides. Chemico-Biological Interactions 206, 302–308.
A metabonomic investigation of the effects of 60 days exposure of rats to two types of pyrethroid insecticides.Crossref | GoogleScholarGoogle Scholar | 24121187PubMed |

Lindhout, D., and Hageman, G. (1987). Amyoplasia congenita‐like condition and maternal malathion exposure. Teratology 36, 7–9.
Amyoplasia congenita‐like condition and maternal malathion exposure.Crossref | GoogleScholarGoogle Scholar | 3672379PubMed |

Loumbourdis, N. S., and Vogiatzis, A. K. (2002). Impact of cadmium on liver pigmentary system of the frog Rana ridibunda. Ecotoxicology and Environmental Safety 53, 52–58.
| 12481857PubMed |

Ma, W. C. (Ed.) (1996). Lead in Mammals. In ‘Environmental Contaminants in Wildlife: Interpreting Tissue Concentrations’. pp. 281–296. (CRC Press: Boca Raton, FL, USA.)

Mangini, P. R., Medici, E. P., and Fernandes-Santos, R. C. (2012). Tapir health and conservation medicine. Integrative Zoology 7, 331–345.
Tapir health and conservation medicine.Crossref | GoogleScholarGoogle Scholar | 23253365PubMed |

Marrs, T. (2002). Studies of developmental neurotoxicity and their use in establishing acute reference doses and acceptable daily intakes. Joint Food and Agriculture Organization of the United Nations (FAO) and World Health Organization (WHO) Meeting on Pesticide Residues.

Marshall, E. (1985). The rise and decline of Temik. Science 229, 1369–1371.
The rise and decline of Temik.Crossref | GoogleScholarGoogle Scholar | 17798373PubMed |

Martínez-Haro, M., Mateo, R., Guitart, R., Soler-Rodríguez, F., Pérez-López, M., Maria-Mojica, P., and García-Fernández, A. J. (2008). Relationship of the toxicity of pesticide formulations and their commercial restrictions with the frequency of animal poisonings. Ecotoxicology and Environmental Safety 69, 396–402.
Relationship of the toxicity of pesticide formulations and their commercial restrictions with the frequency of animal poisonings.Crossref | GoogleScholarGoogle Scholar | 17570525PubMed |

Medici, E. P., and Desbiez, A. L. J. (2012). Population Viability Analysis (PVA): using a modelling tool to assess the viability of tapir populations in fragmented landscapes. Journal of Integrative Zoology 7, 356–372.
Population Viability Analysis (PVA): using a modelling tool to assess the viability of tapir populations in fragmented landscapes.Crossref | GoogleScholarGoogle Scholar | 23253367PubMed |

Medici, E. P., Mangini, P. R., and Fernandes-Santos, R. C. (2014). Health assessment of wild lowland tapir (Tapirus terrestris) populations in the Atlantic Forest and Pantanal biomes, Brazil (1996–2012). Journal of Wildlife Diseases 50, 817–828.
Health assessment of wild lowland tapir (Tapirus terrestris) populations in the Atlantic Forest and Pantanal biomes, Brazil (1996–2012).Crossref | GoogleScholarGoogle Scholar | 25105810PubMed |

Meeker, J. D., Ryan, L., Barr, D. B., Herrick, R. F., Bennett, D. H., Bravo, R., and Hauser, R. (2004). The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality. Environmental Health Perspectives 112, 1665–1670.
The relationship of urinary metabolites of carbaryl/naphthalene and chlorpyrifos with human semen quality.Crossref | GoogleScholarGoogle Scholar | 15579410PubMed |

Neathery, M. W., and Miller, W. J. (1975). Metabolism and toxicity of cadmium, mercury, and lead in animals: a review. Journal of Dairy Science 58, 1767–1781.
Metabolism and toxicity of cadmium, mercury, and lead in animals: a review.Crossref | GoogleScholarGoogle Scholar | 1107364PubMed |

Paßlack, N., Mainzer, B., Lahrssen-Wiederholt, M., Schafft, H., Palavinskas, R., Breithaupt, A., Neumann, K., and Zentek, J. (2014). Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys. SpringerPlus 3, 343.
Concentrations of strontium, barium, cadmium, copper, zinc, manganese, chromium, antimony, selenium and lead in the equine liver and kidneys.Crossref | GoogleScholarGoogle Scholar | 25061551PubMed |

Patnaik, B. B., Hongray Howrelia, J., Mathews, T., and Selvanayagam, M. (2011). Histopathology of gill, liver, muscle, and brain of Cyprinus carpio communis L. exposed to sublethal concentration of lead and cadmium. African Journal of Biotechnology 10, 12218–12223.

Peres, F., Moreira, J. C., and Dubois, G. S. (Eds.) (2003). ‘É Veneno ou é Remédio?: Agrotóxicos, Saúde e Ambiente.’ (Editora Fundação Oswaldo Cruz (FIOCRUZ): Rio de Janeiro, Brazil.)

Puls, R. (1994). ‘Mineral Levels in Animal Health: Diagnostic Data.’ (Sherpa International, Clearbrook, British Columbia.)

Rabinowitz, P. M., Gordon, Z., Holmes, R., Taylor, B., Wilcox, M., Chudnov, D., Nadkarni, P., and Dein, F. J. (2005). Animals as sentinels of human environmental health hazards: an evidence-based analysis. EcoHealth 2, 26–37.
Animals as sentinels of human environmental health hazards: an evidence-based analysis.Crossref | GoogleScholarGoogle Scholar |

Ramalho, J. F. G. P., Amaral Sobrinho, N. M. B., and Velloso, A. C. X. (2000). Heavy metals contamination of a watershed in Caetés by the use of agrochemicals. Pesquisa Agropecuária Brasileira 35, 1289–1303.
Heavy metals contamination of a watershed in Caetés by the use of agrochemicals.Crossref | GoogleScholarGoogle Scholar |

R Core Team (2018). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing, Vienna, Austria.)

Roberts, J. R., and Reigart, J. R. (Eds.) (2013). Organophosphate Insecticides. In ‘Recognition and Management of Pesticide Poisonings’. pp. 43–55. (EPA, Office of Pesticide Programs: Washington, DC, USA)

Rosolen, V., De-Campos, A. B., Govone, J. S., and Rocha, C. (2015). Contamination of wetland soils and floodplain sediments from agricultural activities in the Cerrado biome (State of Minas Gerais, Brazil). Catena 128, 203–210.
Contamination of wetland soils and floodplain sediments from agricultural activities in the Cerrado biome (State of Minas Gerais, Brazil).Crossref | GoogleScholarGoogle Scholar |

Ross, S. M., McManus, I. C., Harrison, V., and Mason, O. (2013). Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review. Critical Reviews in Toxicology 43, 21–44.
Neurobehavioral problems following low-level exposure to organophosphate pesticides: a systematic and meta-analytic review.Crossref | GoogleScholarGoogle Scholar | 23163581PubMed |

Sano, E. E., Rosa, R., Brito, J. L. S., and Ferreira, L. G. (2010). Land cover mapping of the tropical savanna region in Brazil. Environmental Monitoring and Assessment 166, 113–124.
Land cover mapping of the tropical savanna region in Brazil.Crossref | GoogleScholarGoogle Scholar | 19504057PubMed |

Sharma, R. P., Street, J. C., Shupe, J. L., and Bourcier, D. R. (1982). Accumulation and depletion of cadmium and lead in tissues and milk of lactating cows fed small amounts of these metals. Journal of Dairy Science 65, 972–979.
Accumulation and depletion of cadmium and lead in tissues and milk of lactating cows fed small amounts of these metals.Crossref | GoogleScholarGoogle Scholar | 7108012PubMed |

Simoncelli, F., Belia, S., Rosa, I. D., Paracucchi, R., Rossi, R., Porta, G. L., Lucentini, L., and Fagotti, A. (2015). Short-term cadmium exposure induces stress responses in frog (Pelophylax bergeri) skin organ culture. Ecotoxicology and Environmental Safety 122, 221–229.
Short-term cadmium exposure induces stress responses in frog (Pelophylax bergeri) skin organ culture.Crossref | GoogleScholarGoogle Scholar | 26277541PubMed |

Smith, G. J. (1987). ‘Pesticide use and toxicology in relation to wildlife: organophosphorus and carbamate, compounds.’ (U.S. Government Documents (Utah Regional Depository).)

Sohail, M. L., Khan, M. S., Ijaz, M., Avais, M., Zahoor, M. Y., Naseer, O., and Saleem, M. U. (2017). Evidence of clinicopathological changes during equine leptospirosis. Pakistan Journal of Zoology 49, 849–853.
Evidence of clinicopathological changes during equine leptospirosis.Crossref | GoogleScholarGoogle Scholar |

Strassburg, B. B., Brooks, T., Feltran-Barbieri, R., Iribarrem, A., Crouzeilles, R., Loyola, R., Latawiec, A. E., Oliveira Filho, F. J., Scaramuzza, C. D. M., Scarano, F. R., and Soares-Filho, B. (2017). Moment of truth for the Cerrado hotspot. Nature Ecology & Evolution 1, 0099.
Moment of truth for the Cerrado hotspot.Crossref | GoogleScholarGoogle Scholar |

Tajik, H., Ramin, A., Nozad, S., Jelodari, B., Ashtab, G., Eftekhari, Z., and Ramin, S. (2012). Relationship between liver lipid and liver dry matter in slaughtered ruminants. Veterinary Research Forum 3, 275–279.
| 25653771PubMed |

Tomlin, C. D. (Ed.) (2009). ‘The Pesticide Manual: A World Compendium.’ (British Crop Production Council: Aldershot, UK.)

van der Merwe, D., Brooks, J. D., Gehring, R., Baynes, R. E., Monteiro-Riviere, N. A., and Riviere, J. E. (2006). A physiologically based pharmacokinetic model of organophosphate dermal absorption. Toxicological Sciences 89, 188–204.
A physiologically based pharmacokinetic model of organophosphate dermal absorption.Crossref | GoogleScholarGoogle Scholar | 16221965PubMed |

Wilcke, W., Krauss, M., Lilienfein, J., and Amelung, W. (2004). Polycyclic aromatic hydrocarbon storage in a typical Cerrado of the Brazilian savanna. Journal of Environmental Quality 33, 946–955.
Polycyclic aromatic hydrocarbon storage in a typical Cerrado of the Brazilian savanna.Crossref | GoogleScholarGoogle Scholar | 15224931PubMed |

World Health Organization (1991). Environmental Health Criteria 121: Aldicarb. pp. 11–13. (World Health Organization.)

Xia, Y., Cheng, S., Bian, Q., Xu, L., Collins, M. D., Chang, H. C., Song, L., Liu, J., Wang, S., and Wang, X. (2005). Genotoxic effects on spermatozoa of carbaryl-exposed workers. Toxicological Sciences 85, 615–623.
Genotoxic effects on spermatozoa of carbaryl-exposed workers.Crossref | GoogleScholarGoogle Scholar | 15615886PubMed |