Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

A standardised monitoring protocol for the black caiman (Melanosuchus niger)

Adrián Naveda-Rodríguez A C D , Víctor Utreras B. B and Galo Zapata-Ríos A
+ Author Affiliations
- Author Affiliations

A Wildlife Conservation Society, Ecuador Program, Quito 100501, Ecuador.

B Ministerio del Ambiente, Dirección Nacional de Biodiversidad, Quito 100501, Ecuador.

C Present address: Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, MS 39762, USA.

D Corresponding author. Email: adrian.naveda@gmail.com

Wildlife Research 47(4) 317-325 https://doi.org/10.1071/WR19135
Submitted: 7 August 2019  Accepted: 26 November 2019   Published: 20 May 2020

Abstract

Context: Estimating population abundance can be plagued by the violation of methodological assumptions, which can be overcome with standardised protocols. The black caiman (BC) is considered a conservation-dependent species, and previous abundance estimates are surrounded by uncertainty and flaws in the survey (e.g. different survey design and efforts) and analytical approach used (e.g. relative abundance index, which ignores imperfect detection). Its conservation status assessment demands the implementation of a standardised monitoring protocol.

Aims: The protocol provides guidelines to collect and analyse data in a consistent manner to survey BC. Besides accounting for imperfect detection to produce reliable abundance estimates, the protocol aimed to be easily implemented by park rangers, and to fit field observations into a hierarchical modelling approach to assess how environmental variables affects detectability and abundance.

Methods: The protocol subdivides a 20-km transect into 10 2-km segments; each transect is surveyed four consecutive nights, starting at 1900 hours and finishing when the 20 km are completed. For each caiman detected, the observers estimated head size to classify the individual by age. We tested the protocol in Ecuador during January and December 2017, and field data were analysed using N-mixture models. We compared abundance estimates derived with this protocol with commonly used relative abundance indexes.

Key results: We surveyed 460 km that resulted in 177 detections. Percentage of moonlight and distance from human settlement best explained detectability and abundance respectively. Mean detection probability was 0.14 (95% BCI: 0.1–0.18), whereas absolute abundance was 196 (95% BCI: 147–370). The overall adult to immature ratio was 1 : 1.3.

Conclusions: This is the first estimate of detectability and absolute abundance for BC by using a standardised survey with a clearly defined and repeatable survey and analysis methods. Relative abundance indexes did not reflect absolute abundance estimates. We recommend the use of this protocol in future surveys across the Amazon region to effectively evaluate BC conservation status.

Implications: Population size cannot be estimated from relative abundance indexes; they lead to bias estimates for ignoring imperfect detection. We discourage the use of relative abundance indexes to evaluate the conservation status of this species.

Additional keywords: abundance, Alligatoridae, Amazon, detectability, N-mixture model, population size.


References

Albarracín, M., and Madera, R. (2011). Estudios bio-ecológicos del caimán negro (Melanosuchus niger) en la laguna de Limoncocha, Ecuador. Anuario de la Universidad Internacional SEK 12, 71–77.

Albuja, L., Almendáriz, A., Barriga, R., Montalvo, L. D., Cáceres, F., and Román, J. L. (2012). ‘Fauna de Vertebrados del Ecuador.’ (Instituto de Ciencias Biológicas. Escuela Politécnica Nacional: Quito, Ecuador.)

Anderson, D. R. (2001). The need to get the basics right in wildlife field studies. Wildlife Society Bulletin 29, 1294–1297.

Anderson, D. R. (2003). Response to Engeman: index values rarely constitute reliable information. Wildlife Society Bulletin 31, 288–291.

Arroba, F. (2011). Abundancia relativa de las especies de aligatóridos presentes en el sistema hidrográfico del río Yasuní y del río Lagartococha en la Amazonía Ecuatoriana. Undergraduate B.Sc. Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Asanza, E. (1992). Population dynamics, ecology and conservation of the black caiman, Melanosuchus niger in Ecuadorian Amazon. In ‘Proceedings of the 11th Working Meeting of the IUCN/SSC Crocodile Specialist Group’. (Ed. Crocodile Specialist Group.) pp. 22–30. (The World Conservation Union: Gland, Switzerland.)

Asanza, E. (1999). Black water and white water lake systems of the Ecuadorian Amazon and the ecology of the black caiman (Melanosuchus niger). PhD Dissertation, University of Georgia, Athens, Greece.

Balaguera-Reina, S. A., Venegas-Anaya, M. D., Rivera-Rivera, B., Morales Ramírez, D. A., and Densmore, L. D. (2018). How to estimate population size in crocodylians? population ecology of american crocodiles in Coiba Island as study case. Ecosphere 9, e02474.
How to estimate population size in crocodylians? population ecology of american crocodiles in Coiba Island as study case.Crossref | GoogleScholarGoogle Scholar |

Bayliss, P. (1987). Survey methods and monitoring within crocodile management programs. In ‘Wildlife Management: Crocodiles and Alligators’. (Eds G. J. W. Webb, S. C. Manolis, and P. J. Whitehead.) pp. 157–175. (Surrey Beatty: Sydney, NSW, Australia.)

Carter, C. (2010). Effects of habitat type and structure on detection probabilities of American alligators (Alligator mississippiensis) during night-light counts. M.Sc. Thesis: University of Florida, Gainesville, FL, USA.

Caut, S., Francois, V., Bacques, M., Guiral, D., Lemaire, J., Lepoint, G., Marquis, O., and Sturaro, N. (2019). The dark side of the black caiman: shedding light on species dietary ecology and movement in Agami Pond, French Guiana. PLoS One 14, e0217239.
The dark side of the black caiman: shedding light on species dietary ecology and movement in Agami Pond, French Guiana.Crossref | GoogleScholarGoogle Scholar | 31233530PubMed |

Chabreck, R. H. (1963). Methods for capturing, marking and sexing alligators. Proceedings of the Southeastern Association of Fish & Wildlife Agencies 17, 47–50.

Chabreck, R. H. (1966). Methods of determining the size and composition of alligator populations in Louisiana. Proceedings of the Southeastern Association of Fish & Wildlife Agencies 20, 105–112.

Chakraborty, A., Feigelson, E. D., and Babu, G. B. (2014). ‘Astronomy Users Library for R, Version 0.1.’ (R Core Development Team: Vienna, Austria) Available at https://cran.r-project.org/web/packages/astrolibR/index.html [verified 7 July 2019].

CITES (2017). ‘Apéndices I, II y III.’ (CITES: Geneva, Switzerland) Available at https://cites.org/eng/app/appendices.php [verified 20 October 2018].

Da Silveira, R., Magnusson, W. E., and Campos, Z. (1997). Monitoring the distribution, abundance and breeding areas of Caiman crocodilus and Melanosuchus niger in the Anavilhanas Archipelago, central Amazonia, Brazil. Journal of Herpetology 31, 514–520.
Monitoring the distribution, abundance and breeding areas of Caiman crocodilus and Melanosuchus niger in the Anavilhanas Archipelago, central Amazonia, Brazil.Crossref | GoogleScholarGoogle Scholar |

Da Silveira, R., Magnusson, W. E., and Thorbjarnarson, J. B. (2008). Factors affecting the number of caimans seen during spotlight surveys in the Mamirauá Reserve, Brazilian Amazonia. Copeia 2008, 425–430.
Factors affecting the number of caimans seen during spotlight surveys in the Mamirauá Reserve, Brazilian Amazonia.Crossref | GoogleScholarGoogle Scholar |

Da Silveira, R., Campos, Z., Thorbjarnarson, J., and Magnusson, W. E. (2013). Growth rates of black caiman (Melanosuchus niger) and spectacled caiman (Caiman crocodilus) from two different Amazonian flooded habitats. Amphibia-Reptilia 34, 437–449.
Growth rates of black caiman (Melanosuchus niger) and spectacled caiman (Caiman crocodilus) from two different Amazonian flooded habitats.Crossref | GoogleScholarGoogle Scholar |

Dénes, F. V., Silveira, L. F., and Beissinger, S. R. (2015). Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation. Methods in Ecology and Evolution 6, 543–556.
Estimating abundance of unmarked animal populations: accounting for imperfect detection and other sources of zero inflation.Crossref | GoogleScholarGoogle Scholar |

Dueñas, J. (2008). Monitoreo poblacional de Melanosuchus niger y Caiman crocodilus en cinco lagunas de la reserva de producción faunística Cuyabeno provincia de Sucumbíos Ecuador. Undergraduate B.Sc. Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Endara, M. A. (2000). Census of black caiman in Ecuador. Crocodile Specialist Group Newsletter 19, 16–17.

Eversole, C. B., Henke, S. E., Wester, D. B., Ballard, B. M., and Powell, R. L. (2015). Responses of American alligators (Alligator mississippiensis) to environmental conditions: implications for population and ecosystem monitoring. Herpetologica 71, 37–45.
Responses of American alligators (Alligator mississippiensis) to environmental conditions: implications for population and ecosystem monitoring.Crossref | GoogleScholarGoogle Scholar |

Fiske, I., and Chandler, R. (2011). Unmarked: an r package for fitting hierarchical models of wildlife occurrence and abundance. Journal of Statistical Software 43, 1–23.
Unmarked: an r package for fitting hierarchical models of wildlife occurrence and abundance.Crossref | GoogleScholarGoogle Scholar |

Fox, G. A., Negrete-Yankelevich, S., and Sosa, V. J. (2015). ‘Ecological Statistics: Contemporary Theory and Application.’ (Oxford University Press: Oxford, UK.)

Fukuda, Y., Saalfeld, K., Lindner, G., and Nichols, T. (2013). Estimation of total length from head length of saltwater crocodiles (Crocodylus porosus) in the Northern Territory, Australia. Journal of Herpetology 47, 34–40.
Estimation of total length from head length of saltwater crocodiles (Crocodylus porosus) in the Northern Territory, Australia.Crossref | GoogleScholarGoogle Scholar |

Gardner, B., Garner, L. A., Cobb, D. T., and Moorman, C. E. (2016). Factors affecting occupancy and abundance of American alligators at the northern extent of their range. Journal of Herpetology 50, 541–547.
Factors affecting occupancy and abundance of American alligators at the northern extent of their range.Crossref | GoogleScholarGoogle Scholar |

González-Trujillo, R., Méndez-Alonzo, R., Arroyo-Rodríguez, V., Vega, E., González-Romero, A., and Reynoso, V. H. (2014). Vegetation cover and road density as indicators of habitat suitability for the Morelet’s crocodile. Journal of Herpetology 48, 188–194.
Vegetation cover and road density as indicators of habitat suitability for the Morelet’s crocodile.Crossref | GoogleScholarGoogle Scholar |

Hines, T., and Rice, K. G. (1992). A report on an initial survey effort to assess the status of black caiman Melanosuchus niger in the Amazon region of Ecuador. In ‘Proceedings of the 11th Working Meeting of the IUCN/SSC Crocodile Specialist Group’. (Ed. Crocodile Specialist Group.) pp. 138–175. (The World Conservation Union: Gland, Switzerland.)

Huete, A. R., Didan, K., Shimabukuro, Y. E., Ratana, P., Saleska, S. R., Hutyra, L. R., Yang, W., Nemani, R. R., and Myneni, R. (2006). Amazon rainforests green-up with sunlight in dry season. Geophysical Research Letters 33, .
Amazon rainforests green-up with sunlight in dry season.Crossref | GoogleScholarGoogle Scholar |

IUCN (2012). ‘IUCN Red List Categories and Criteria: Version 3.1.’ (IUCN: Gland, Switzerland)

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., and Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data 4, 170122.
Climatologies at high resolution for the earth’s land surface areas.Crossref | GoogleScholarGoogle Scholar | 28872642PubMed |

Kéry, M., and Schmidt, B. R. (2008). Imperfect detection and its consequences for monitoring for conservation. Community Ecology 9, 207–216.
Imperfect detection and its consequences for monitoring for conservation.Crossref | GoogleScholarGoogle Scholar |

King, F. W., Espinal, M., and Cerrato, C. (1990). Distribution and status of the crocodilians of Honduras. In ‘Proceedings of the 10th Working Meeting of the IUCN/SSC Crocodile Specialist Group’. (Ed. Crocodile Specialist Group.) pp. 313–354. (The World Conservation Union: Gland, Switzerland.)

Madera, R. (2011). Monitoreo de caimanes (Alligatorinae): aplicación en estudios poblacionales en la laguna de Limoncocha, provincia de Sucumbíos. Undergraduate B.Sc. Thesis, Universidad Internacional SEK, Quito, Ecuador.

Mazerolle, M. J. (2016). ‘AICcmodavg: Model Selection and Multimodel Inference based on (Q)AIC(c) version 2.0-4.’ (R Core Development Team: Vienna, Austria) Available at https://cran.r-project.org/web/packages/AICcmodavg/index.html [veridied 12 February 2017].

Mendonça, W. C. D. S., Marioni, B., Thorbjarnarson, J. B., Magnusson, W. E., and Da Silveira, R. (2016). Caiman hunting in central Amazonia, Brazil. The Journal of Wildlife Management 80, 1497–1502.
Caiman hunting in central Amazonia, Brazil.Crossref | GoogleScholarGoogle Scholar |

McDonald, J. H. (2014). ‘Handbook of Biological Statistics.’ 3rd edn. (Sparky House Publishing: Baltimore, MD.)

Messel, H., Vorlicek, G. C., Wells, A. G., and Green, A. K. (1981). ‘Surveys of Tidal River Systems in the Northern Territory of Australia and their Crocodile Populations. The Blyth–Cadell rivers System Study and the Status of Crocodylus porosus in Tidal Waterways of Northern Australia.’ (Pergamon Press: Sydney, NSW, Australia.)

Ministerio del Ambiente (2013a). ‘Mapa de Bioclima’. (Ministerio del Ambiente de Ecuador: Quito, Ecuador.)

Ministerio del Ambiente (2013b). ‘Mapa de Ecosistema del Ecuador Continental.’ (Ministerio del Ambiente de Ecuador: Quito, Ecuador.)

Moreto, W. D. (2015). Introducing intelligence-led conservation: bridging crime and conservation science. Crime Science 4, 15.
Introducing intelligence-led conservation: bridging crime and conservation science.Crossref | GoogleScholarGoogle Scholar |

Myneni, R. B., Yang, W., Nemani, R. R., Huete, A. R., Dickinson, R. E., Knyazikhin, Y., Didan, K., Fu, R., Negrón Juárez, R. I., Saatchi, S. S., Hashimoto, H., Ichii, K., Shabanov, N. V., Tan, B., Ratana, P., Privette, J. L., Morisette, J. T., Vermote, E. F., Roy, D. P., Wolfe, R. E., Friedl, M. A., Running, S. W., Votava, P., El-Saleous, N., Devadiga, S., Su, Y., and Salomonson, V. V. (2007). Large seasonal swings in leaf area of Amazon rainforests. Proceedings of the National Academy of Sciences of the United States of America 104, 4820–4823.
Large seasonal swings in leaf area of Amazon rainforests.Crossref | GoogleScholarGoogle Scholar | 17360360PubMed |

Ojasti, J., and Dallmeier, F. (2000). ‘Manejo de Fauna Silvestre Neotropical.’ (Smithsonian Institution: Washington, DC, USA.)

Ortiz, D. (2012). Estudio poblacional de caimanes (crocodylia: alligatoridae) en la Amazonía Ecuatoriana. B.Sc. Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Ortiz, D., and Rodríguez-Guerra, A. (2019). ‘Melanosuchus niger.’ (Pontificia Universidad Católica del Ecuador: Quito, Ecuador.) Available at https://bioweb.bio/faunaweb/reptiliaweb/FichaEspecie/Melanosuchus%20niger [verified 5 June 2019].

Pacheco, L. F. (1996). Effects of environmental variables on black caiman counts in Bolivia. Wildlife Society Bulletin (1973–2006) 24, 44–49.

Pantoja-Lima, J., Rebêlo, G. H., and Pezzuti, J. C. B. (2010). Spectacled (Caiman crocodilus) and black caiman (Melanosuchus niger) populations in the Abufari Biological Reserve, Amazonas, Brazil. Revista Colombiana Ciencia Animal 2, 33–44.
Spectacled (Caiman crocodilus) and black caiman (Melanosuchus niger) populations in the Abufari Biological Reserve, Amazonas, Brazil.Crossref | GoogleScholarGoogle Scholar |

Powell, L. A., and Gale, G. A. (2015). ‘Estimation of Parameters for Animal Populations: a Primer for the Rest of Us.’ (Caught Napping Publications: Lincoln, NE, USA.)

Rebêlo, G. H., and Magnusson, W. E. (1983). An analysis of the effect of hunting on Caiman crocodilus and Melanosuchus niger based on the sizes of confiscated skins. Biological Conservation 26, 95–104.
An analysis of the effect of hunting on Caiman crocodilus and Melanosuchus niger based on the sizes of confiscated skins.Crossref | GoogleScholarGoogle Scholar |

Ron, S. R., Vallejo, A., and Asanza, E. (1998). Human influence on the wariness of Melanosuchus niger and Caiman crocodilus in Cuyabeno, Ecuador. Journal of Herpetology 32, 320–324.
Human influence on the wariness of Melanosuchus niger and Caiman crocodilus in Cuyabeno, Ecuador.Crossref | GoogleScholarGoogle Scholar |

Ross, J.P. (2000). ‘Melanosuchus niger. The IUCN Red List of Threatened Species 2000: e.T13053A3407604.’ (The World Conservation Union: Gland, Switzerland.) Available at http://dx.doi.org/10.2305/IUCN.UK.2000.RLTS.T13053A3407604.en [verified 25 February 2017]

Royle, J. A. (2004). N-mixture models for estimating population size from spatially replicated counts. Biometrics 60, 108–115.
N-mixture models for estimating population size from spatially replicated counts.Crossref | GoogleScholarGoogle Scholar | 15032780PubMed |

Running, S., Mu, Q., and Zhao, M. 2015. ‘MOD17A2H MODIS/Terra gross primary Productivity 8-Day L4 Global 500m SIN Grid V006.’ (NASA EOSDIS Land Processes DAAC.) Available at http://doi.org/10.5067/MODIS/MOD17A2H.006 [verified 15 January 2019].

Schmidt, B. R., and Pellet, J. (2009). Quantifying abundance: counts, detection probabilities, and estimates. In ‘Amphibian Ecology and Conservation: a Handbook of Techniques’. (Ed. C. K. Dodd.) pp. 465–479. (Oxford University Press: Oxford, UK.)

Shirley, M. H., Dorazio, R. M., Abassery, E., Elhady, A. A., Mekki, M. S., and Asran, H. H. (2012). A sampling design and model for estimating abundance of Nile crocodiles while accounting for heterogeneity of detectability of multiple observers. The Journal of Wildlife Management 76, 966–975.
A sampling design and model for estimating abundance of Nile crocodiles while accounting for heterogeneity of detectability of multiple observers.Crossref | GoogleScholarGoogle Scholar |

Skalski, J. R., Ryding, K. E., and Millspaugh, J. (2010). ‘Wildlife Demography: Analysis of Sex, Age, and Count Data.’ (Elsevier Academic Press: Amsterdam, The Netherlands.)

Tejado, C. (2012). Abundancia de Melanosuchus niger Spix, 1825, Paleosuchus trigonatus Schneider, 1801 y Caiman crocodilus L., 1758 en el cauce medio del río Mazán (Amazonas, Perú). Munibe 60, 113–130.

Thorbjarnarson, J. B. (2010). Black caiman Melanosuchus niger. In ‘Crocodiles. Status Survey and Conservation Action Plan’. (Eds S. C. Manolis and C. Stevenson.) pp. 29–39. (Crocodile Specialist Group: Darwin, NT, Australia.)

Villamarin, F. (2006). Anidación y patrones de uso de hábitat de Melanosuchus niger en dos localidades de la Amazonía Ecuatoriana. B.Sc. Thesis, Pontificia Universidad Católica del Ecuador, Quito, Ecuador.

Woodroffe, R. (2000). Predators and people: using human densities to interpret declines of large carnivores. Animal Conservation 3, 165–173.
Predators and people: using human densities to interpret declines of large carnivores.Crossref | GoogleScholarGoogle Scholar |