Register      Login
Wildlife Research Wildlife Research Society
Ecology, management and conservation in natural and modified habitats
RESEARCH ARTICLE

Variations in pest bird density in Argentinean agroecosystems in relation to land use and/or cover, vegetation productivity and climate

Noelia C. Calamari https://orcid.org/0000-0002-9605-2969 A E , Sonia B. Canavelli A , Alexis Cerezo B * , Sebastián Dardanelli A , Jaime N. Bernardos C and María E. Zaccagnini D
+ Author Affiliations
- Author Affiliations

A National Institute of Agriculture Technology, Paraná Agricultural Experimental Station, E3100XAD, Oro Verde, Entre Ríos, Argentina.

B National University of Buenos Aires, Faculty of Agronomy, Department of Quantitative Methods and Information Systems, C1417DSE, Buenos Aires, Argentina.

C National Institute of Agriculture Technology, Guillermo Covas Agricultural Experimental Station, L6326AXA, Anguil, La Pampa, Argentina.

D National Institute of Agriculture Technology, Central Headquarters, B1712WAA, Hurlingham, Buenos Aires, Argentina.

E Corresponding author. Email: calamari.noelia@inta.gob.ar

Wildlife Research 45(8) 668-678 https://doi.org/10.1071/WR17167
Submitted: 18 November 2017  Accepted: 16 September 2018   Published: 5 December 2018

Abstract

Context: Changes in environmental conditions may influence bird populations, including pest bird species, and their distribution. In Argentina, particularly in the Pampas region, agricultural expansion has resulted in important changes in agroecosystems, with impacts on bird species.

Aims: This study analysed the relationship between pest bird densities and the environmental variables associated with land use and/or cover, vegetation productivity and climate. The study focused on the most important pest bird species to grain crops in Argentina and Uruguay: the eared dove (Zenaida auriculata) and the monk parakeet (Myiopsitta monachus).

Methods: An area in Central Argentina was divided into three agro-productive regions, one predominantly agricultural and two with mixed production activities: agricultural rangeland and agricultural forested rangeland. Bird populations were sampled on a yearly basis between 2003 and 2011 in point-transects located along secondary roads (47 routes in total). Linear mixed models and a multi-model inference approach were used to compare the effects of individual predictive variables on bird densities.

Key results: Mean estimated density for the eared dove was 0.39 individuals per ha (±0.02), almost three times the density of the monk parakeet (0.10 individuals per ha ± 0.02). The spatial distribution of changes in density of the eared dove and monk parakeet showed irregular patterns across the study area. Density of eared dove was directly related to cover of native and exotic woodlots and inversely related to cover of fallow and weedy fields, and to temperature and rainfall. Monk parakeet density, in turn, was directly related to cover of woodlots.

Conclusions: The density of eared doves and monk parakeets changed mostly in relation to land use and/or cover and, to a lesser extent, to climatic conditions. Information of pest bird populations in a long-term period allowed us to understand spatial patterns in bird population distribution and to identify the main environmental factors explaining them.

Implications: The consideration of land use and/or cover, vegetation productivity and climate variables at regional scale, measured during a long-term period, would be critical for anticipating population increases and, possibly, increases in crop damage.

Additional keywords: Argentina, mixed linear models, population trends.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Amano, T., Ushiyama, K., Fujita, G., and Higuchi, H. (2004). Factors affecting rice grain density unconsumed by white-fronted geese in relation to wheat damage. Agriculture, Ecosystems & Environment 102, 403–407.
Factors affecting rice grain density unconsumed by white-fronted geese in relation to wheat damage.Crossref | GoogleScholarGoogle Scholar |

Amano, T., Ushiyama, K., and Higuchi, H. (2008). Methods for predicting risks of wheat damage by white-fronted geese. The Journal of Wildlife Management 72, 1845–1852.
Methods for predicting risks of wheat damage by white-fronted geese.Crossref | GoogleScholarGoogle Scholar |

Anderson, D. R., Burnham, K. P., and Thompson, W. L. (2000). Null hypothesis testing: problems, prevalence, and an alternative. The Journal of Wildlife Management 64, 912–923.
Null hypothesis testing: problems, prevalence, and an alternative.Crossref | GoogleScholarGoogle Scholar |

Baptista, L. F., Trail, P. W., Horblit, H. M., Bonan, A., and Boesman, P. (2017). Eared dove (Zenaida auriculata). In ‘Handbook of the Birds of the World Alive’. (Eds J. del Hoyo, A. Elliott, J. Sargatal, D. A. Christie and E. de Juana.) (Lynx Editions: Barcelona.) Available at http://www.hbw.com/node/54207 [Accessed 8 May 2017]

Barkowska, M., Pinowski, J., and Pinowska, B. (2003). The effect of trends in ambient temperature on egg volume in the tree sparrow Passer montanus. Acta Ornithologica 38, 5–13.
The effect of trends in ambient temperature on egg volume in the tree sparrow Passer montanus.Crossref | GoogleScholarGoogle Scholar |

Beletsky, L. (Ed.) (1996). ‘The Red-winged Blackbird. The Biology of a Strongly Polygynous Songbird.’ (Academic Press Limited: London.)

Bernardos, J. N., and Farrell, M. (2012). Evaluación de daño por la paloma torcaza (Zenaida auriculata) en girasol y pérdida de cosecha en la provincia de La Pampa campaña 2011–2012. Instituto Nacional de Tecnología Agropecuaria, Ministerio de Agricultura de la Nación, Argentina. [In Spanish]

Bibby, C. J., Burgess, N. D., Hill, D. A., and Mustoe, S. H. (Eds.) (2000). ‘Bird Census Techniques.’ (Academic Press: London.)

Brescia, V., Lema, D., and Parellada, G. (Eds.) (1998). ‘El Fenómeno ENSO y la Agricultura Pampeana: Impactos Económicos en Trigo, Maíz, Girasol y Soja.’ (Instituto Nacional de Tecnología Agropecuaria, Instituto de Economía y Sociología: Argentina.) [In Spanish]

Bruggers, R. L., and Zaccagnini, M. E. (1994). Vertebrate pest problems and research in Argentina. Vida Silvestre Neotropical 3, 71–83.

Bruggers, R. L., Rodriguez, E., and Zaccagnini, M. E. (1998). Planning for bird pest problem resolution: a case study. International Biodeterioration & Biodegradation 42, 173–184.
Planning for bird pest problem resolution: a case study.Crossref | GoogleScholarGoogle Scholar |

Bruun, M., and Smith, H. G. (2003). Landscape composition affects habitat use and foraging flight distances in breeding European starlings. Biological Conservation 114, 179–187.
Landscape composition affects habitat use and foraging flight distances in breeding European starlings.Crossref | GoogleScholarGoogle Scholar |

Bucher, E. H. (Ed.) (1984). ‘Las aves como plaga en Argentina.’ (Centro de Zoología Aplicada, Universidad Nacional de Córdoba: Argentina.) [In Spanish]

Bucher, E. H. (1990). The influence of changes in regional land-use patterns on Zenaida dove populations. In ‘Granivorous Birds in Agricultural Landscape’. (Eds J. Pinowsky and J. D. Summers Smith.) pp. 291–303. (Polish Academy of Sciences: Warsaw.)

Bucher, E. H. (1992). Aves plagas de Argentina y Uruguay. Informe de consultoría no publicado, preparado para la Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). Roma, Italia. 18p.

Bucher, E. H. (1998). Palomas: Biología y dinámica poblacional. In ‘Manual de Capacitación sobre Manejo Integrado de Aves Perjudiciales a la Agricultura’. (Eds E. N. Rodríguez and M. E. Zaccagnini.) pp. 73–83. (Organización de las Naciones Unidas para la Alimentación y la Agricultura, Food & Agriculture Organization: Rome.)

Bucher, E. H., and Aramburú, R. M. (2014). Land-use changes and monk parakeet expansion in the Pampas grasslands of Argentina. Journal of Biogeography 41, 1160–1170.
Land-use changes and monk parakeet expansion in the Pampas grasslands of Argentina.Crossref | GoogleScholarGoogle Scholar |

Bucher, E. H., and Bedano, P. (1976). Bird damage problems in Argentina. International Studies on Sparrows 9, 3–16.

Bucher, E. H., and Ranvaud, R. D. (2006). Eared dove outbreaks in South America: patterns and characteristics. Dong Wu Xue Bao 52, 564–567.

Buckland, S. T., Anderson, D. R., Burham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (Eds.) (2001). ‘Introduction to Distance Sampling. Estimating Abundance of Biological Populations.’ (Oxford University Press: Oxford, UK.)

Burnham, K. P., and Anderson, D. R. (Eds.) (1998). ‘Model Selection and Inference: a Practical Information-theoretical Approach.’ (Springer-Verlag: New York.)

Burnham, K. P., and Anderson, D. R. (2001). Kullback–Leibler information as a basis for strong inference in ecological studies. Wildlife Research 28, 111–119.
Kullback–Leibler information as a basis for strong inference in ecological studies.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (Eds.) (2002). ‘Model Selection and Multimodel Inference: a Practical Information-theoretical Approach,’ 2nd edn. (Springer-Verlag: New York.)

Cabrera, A. L. (1972). Fitogeografía de la República Argentina. Boletín de la Sociedad Argentina de Botánica 14, 1–42.

Cabrera, A. L. (1994). Regiones fitogeográficas Argentinas. In ‘Enciclopedia argentina de agricultura y jardinería,’ Tomo 2, segunda edición. (Ed. W. F. Kugler.) pp. 1–85. (Acme. Buenos Aires: Argentina.) [In Spanish]

Calamari, N. C. (2014). Influencia del tamaño de parche y configuración espacial del bosque nativo sobre poblaciones de aves, en Entre Ríos. Tesis Doctoral, Universidad Nacional de Córdoba, Argentina. [In Spanish]

Calamari, N. C., Dardanelli, S., and Canavelli, S. B. (2011). Variaciones en la abundancia poblacional de palomas medianas a lo largo del tiempo. In ‘Bases para disminuir el daño por palomas en cultivos extensivos’. (Ed. Estación Experimental Agropecuaria Paraná del INTA). pp. 23–28. Serie Extensión 64, Estación Experimental Agropecuaria Paraná, Paraná, Argentina. [In Spanish]

Calamari, N. C., Cerezo, A., Canavelli, S. B., Dardanelli, S., Gavier-Pizarro, G. I., and Zaccagnini, M. E. (2016). Long-term association of Tyrannus savana and Sturnella superciliaris density with land cover and climatic variables in agroecosystems of Argentina. El Hornero 32, 97–112.

Canavelli, S. B. (2011). Ecological and human dimensions of monk parakeet damage to crops. PhD Dissertation, University of Florida, Gainesville, FL.

Canavelli, S. B., Zaccagnini, M. E., Torresin, J., Calamari, N. C., Ducommun, M. P., and Capllonch, P. (2004). Monitoreo extensivo de aves en el centro-sur de Entre Ríos. In ‘Temas de la biodiversidad del litoral fluvial argentino’. (Ed. F. G. Aceñolaza.) pp. 349–362. (Instituto Superior de Correlación Geológica, San Miguel de Tucumán: Argentina.)

Canavelli, S. B., González, C., Cavallero, P., and Zaccagnini, M. E. (2008). Daño relativo por aves en cultivos de maíz y girasol del departamento Paraná y zonas aledañas. Serie de Extensión de la EEA Paraná 51, 59–67.

Canavelli, S. B., Zuil, S., Bernardos, J. N., and Zaccagnini, M. E. (2011). Alternativas de manejo para disminuir el daño por palomas en cultivos agrícolas. In ‘Bases para disminuir el daño por palomas en cultivos extensivos’. (Eds S. Dardanelli, and S. B. Canavelli) pp. 9–61. Serie Extensión 64, Estación Experimental Agropecuaria Paraná, Paraná, Argentina. [In Spanish]

Canavelli, S. B., Aramburú, R. M., and Zaccagnini, M. E. (2012). Aspectos a considerar para disminuir los conflictos originados por los daños de la cotorra (Myiopsitta monachus) en cultivos agrícolas. El Hornero 27, 89–101.

Canavelli, S. B., Branch, L. C., Cavallero, P., Gonzáalez, C., and Zaccagnini, M. E. (2014). Multi-level analysis of bird abundance and damage to crop fields. Agriculture, Ecosystems & Environment 197, 128–136.
Multi-level analysis of bird abundance and damage to crop fields.Crossref | GoogleScholarGoogle Scholar |

Clergeau, P. H. (1995). Importance of multiple scale analysis for understanding distribution and for management of an agricultural bird pest. Landscape and Urban Planning 31, 281–289.
Importance of multiple scale analysis for understanding distribution and for management of an agricultural bird pest.Crossref | GoogleScholarGoogle Scholar |

Codesido, M., Zufiaurre, E., and Bilenca, D. (2015). Relationship between pest birds and landscape elements in the Pampas of central Argentina. Emu 115, 80–84.
Relationship between pest birds and landscape elements in the Pampas of central Argentina.Crossref | GoogleScholarGoogle Scholar |

Dardanelli, S., Calamari, N. C., Canavelli, S. B., and Zaccagnini, M. E. (2011). Biología de la paloma mediana (Zenaida auriculata), manchada (Patagioenas maculosa) y picazuro (Patagioenas picazuro). In ‘Bases para disminuir el daño por palomas en cultivos extensivos’. (Ed. Estación Experimental Agropecuaria Paraná del INTA). pp. 11–22. Serie Extensión 64, Estación Experimental Agropecuaria Paraná, Paraná, Argentina. [In Spanish]

De Grazio, J. (1985). Bird pest problems in Uruguay with special notations on damage appraisal methodology. Unpublished Trip Report. (Denver Wildlife Research Centre: Denver, CO.)

De Juana, E., and García, A. M. (2005). Fluctuaciones relacionadas con la precipitación en la riqueza y abundancia de aves de medios esteparios mediterráneos. Ardeola 52, 53–66.

DeSante, D. F., Nott, M. P., and Kaschube, D. R. (2005). Monitoring, modeling, and management: why base avian monitoring on vital rates and how should it be done? In ‘Bird Conservation Implementation and Integration in the Americas’. (Eds C. J. Ralph and T. D. Rich.) pp. 795–804. US Forest Service General Technical Report PSW-GTR-191, Albany, CA.

Dunn, P. (2004). Breeding dates and reproductive performance. Birds Climate Change 35, 69–87.
Breeding dates and reproductive performance.Crossref | GoogleScholarGoogle Scholar |

Dunning, J. B., Danielson, B. J., and Ronald Pulliam, H. (1992). Ecological processes that affect populations in complex landscapes. Oikos 65, 169–175.
Ecological processes that affect populations in complex landscapes.Crossref | GoogleScholarGoogle Scholar |

Eglington, S. M., and Pearce-Higgins, J. W. (2012). Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends. PLoS One 7, e30407.
Disentangling the relative importance of changes in climate and land-use intensity in driving recent bird population trends.Crossref | GoogleScholarGoogle Scholar |

Fischer, J., Lindenmayer, D. B., and Manning, A. D. (2006). Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes. Frontiers Ecology Environment Journal 4, 80–86.
Biodiversity, ecosystem function, and resilience: ten guiding principles for commodity production landscapes.Crossref | GoogleScholarGoogle Scholar |

Fontoura, P. M., and Orsi, M. L. (2014). Comparative population densities of three species of doves (Columbidae) in disturbed landscapes in northern Paraná State, Brazil. Revista Brasileira de Ornitologia 22, 245–250.

Forcey, G. M., Thogmartin, W. E., Linz, G. M., McKann, P. C., and Crimmins, S. M. (2015). Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region. The Journal of Wildlife Management 79, 1022–1033.
Spatially explicit modeling of blackbird abundance in the Prairie Pothole Region.Crossref | GoogleScholarGoogle Scholar |

Goijman, A. P., Conroy, M. J., Bernardos, J. N., and Zaccagnini, M. E. (2015). Multi-season regional analysis of multi-species occupancy: implications for bird conservation in agricultural lands in east–central Argentina. PLoS One 10, e0130874.
Multi-season regional analysis of multi-species occupancy: implications for bird conservation in agricultural lands in east–central Argentina.Crossref | GoogleScholarGoogle Scholar |

Goodwin, D. (Ed.) (1983). ‘Pigeons and Doves of the World.’ (Cornell University Press: New York.)

Gregory, R. D., Willis, S. G., Jiguet, F. D. R., Voříšek, P., Klvaňová, A., van Strien, A., Huntley, B., Collingham, Y. C., Couvet, D., and Green, R. E. (2009). An indicator of the impact of climatic change on European bird populations. PLoS ONE 4, e4678.
An indicator of the impact of climatic change on European bird populations.Crossref | GoogleScholarGoogle Scholar |

Gutiérrez Illán, J., Thomas, C. D., Jones, J. A., Wong, W. K., Shirley, S. M., and Betts, M. G. (2014). Precipitation and winter temperature predict long-term range-scale abundance changes in Western North American birds. Global Change Biology 20, 3351–3364.
Precipitation and winter temperature predict long-term range-scale abundance changes in Western North American birds.Crossref | GoogleScholarGoogle Scholar |

Hagy, H. M., Linz, G. M., and Bleier, W. J. (2008). Optimizing the use of decoy plots for blackbird control in commercial sunflower. Crop Protection 27, 1442–1447.
Optimizing the use of decoy plots for blackbird control in commercial sunflower.Crossref | GoogleScholarGoogle Scholar |

Johnson, J. B., and Omland, K. S. (2004). Model selection in ecology and evolution. Trends in Ecology & Evolution 19, 101–108.
Model selection in ecology and evolution.Crossref | GoogleScholarGoogle Scholar |

Krivoruchko, K. (Ed.) (2012). ‘Empirical Bayesian Kriging’ (ESRI: Redlands, CA.) Available at http://www.esri.com/news/arcuser/1012/empirical-byesian-kriging.html [Verified October 2018]

Lemoine, N., Bauer, H. G., Peintinger, M., and Böhning-Gaese, K. (2007). Effects of climate and land-use change on species abundance in a central European bird community. Conservation Biology 21, 495–503.
Effects of climate and land-use change on species abundance in a central European bird community.Crossref | GoogleScholarGoogle Scholar |

Lewis, J. P., Noetinger, S., Prado, D. E., and Barberis, I. M. (2009). Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina. Biodiversity and Conservation 18, 3615–3628.
Woody vegetation structure and composition of the last relicts of Espinal vegetation in subtropical Argentina.Crossref | GoogleScholarGoogle Scholar |

Linz, G. M., Bucher, E. H., Canavelli, S. B., Rodriguez, E., and Avery, M. L. (2015). Limitations of population suppression for protecting crops from bird depredation: a review. Crop Protection 76, 46–52.
Limitations of population suppression for protecting crops from bird depredation: a review.Crossref | GoogleScholarGoogle Scholar |

Martin, L. F., and Bucher, E. H. (1993). Natal dispersal and first breeding age in monk parakeets. The Auk 110, 930–933.
Natal dispersal and first breeding age in monk parakeets.Crossref | GoogleScholarGoogle Scholar |

Matteucci, S. (2012a). Ecorregión Espinal. In ‘Ecorregiones y Complejos Ecosistémicos Argentinos’. (Eds J. Morello, S. Matteucci, A. F. Rodriguez and M. E. Silva.) pp. 349–390. (Orientación Gráfica Editora: Buenos Aires.)

Matteucci, S. (2012b). Ecorregión Pampa. In ‘Ecorregiones y Complejos Ecosistémicos Argentinos’. (Eds J. Morello, S. Matteucci, A. F. Rodriguez and M. E. Silva.) pp. 391–445. (Orientación Gráfica Editora: Buenos Aires.)

Messina, C., Hansen, J., and Hall, A. J. (1999). Land allocation conditioned on El Niño Southern oscillation phases in the Pampas of Argentina. Agricultural Systems 20, 1–16.

Murton, R. K., Bucher, E. H., Nores, M., Gómez, E., and Reartes, J. (1974). The ecology of the eared dove (Zenaida auriculata) in Argentina. The Condor 76, 80–88.
The ecology of the eared dove (Zenaida auriculata) in Argentina.Crossref | GoogleScholarGoogle Scholar |

Navarro, J. L. (1989). Dinámica poblacional de la cotorra (Myiopsitta monachus). PhD Dissertation, Universidad Nacional de Córdoba, Córdoba, Argentina.

Otis, D. L., and Kilburn, C. M. (1988). Influence of environmental factors on blackbird damage to sunflower. US Fish and Wildlife Service, Technical Report No. 16.

Pilz, J., and Spöck, G. (2008). Why do we need and how should we implement Bayesian kriging methods. Stochastic Environmental Research and Risk Assessment 22, 621–632.
Why do we need and how should we implement Bayesian kriging methods.Crossref | GoogleScholarGoogle Scholar |

Pinheiro, J. C., and Bates, D. M. (Eds.) (2000). ‘Mixed-effects Models in s and s-plus.’ (Springer- Verlag: New York.)

Pinheiro, J. C., Bates, D., DebRoy, S., Sarkar, D., and R Development Core Team (2013). nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–113. Available at https://CRAN.R-project.org/package=nlme [verified 20 May 2016]

Rich, T. D., Beardmore, C. J., Berlanga, H., Blancher, P. J., Bradstreet, M. S. W., Butcher, G. S. D., Demarest, W., Dunn, E. H., Hunter, W. C., Iñigo-Elias, E. E., Kennedy, J. A., Martell, A. M., Panjabi, A. O., Pashley, D. N., and Rosenberg, K. V. (2004). ‘Partners in Flight North American Landbird Conservation Plan.’ (Cornell Laboratory of Ornithology: Ithaca, New York.)

Sarkar, D. (Ed.) (2008). ‘Lattice: Multivariate Data Visualization with R.’ (Springer, New York: USA.)

Schrag, A. M., Zaccagnini, M. E., Calamari, N. C., and Canavelli, S. B. (2009). Climate and land-use influences on avifauna in central Argentina: broad-scale patterns and implications of agricultural conversion for biodiversity. Agriculture, Ecosystems & Environment 132, 135–142.
Climate and land-use influences on avifauna in central Argentina: broad-scale patterns and implications of agricultural conversion for biodiversity.Crossref | GoogleScholarGoogle Scholar |

Silva, G. G., and Guadagnin, D. L. (2017). Effect of land use in seasonal abundance of eared dove (Zenaida auriculata) in southwestern Brazil. Brazilian Journal of Biology , .
Effect of land use in seasonal abundance of eared dove (Zenaida auriculata) in southwestern Brazil.Crossref | GoogleScholarGoogle Scholar |

Soriano, A. (1992). Río de la Plata Grasslands. In ‘Natural Grasslands. Included in Series Ecosystems of the World’. (Ed. R. T. Coupland.) pp. 367–407. (Elsevier: New York.)

Spreyer, M. F., and Bucher, E. H. (1998). Monk parakeet (Myiopsitta monachus). In ‘The Birds of North America’. (Ed. A. Poole and F. Gill.) pp. 1–23. (The Academy of Natural Sciences: Philadelphia, PA.)

Thomas, L., Buckland, S. T., Rexstad, E. A., Laake, J. L., Strindberg, S., Hedley, S. L., Bishop, J. R. B., Marques, T. A., and Burnham, K. P. (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47, 5–14.
Distance software: design and analysis of distance sampling surveys for estimating population size.Crossref | GoogleScholarGoogle Scholar |

Tourenq, C., Aulagnier, S., Durieux, L., Lek, S., Mesléard, F., Johnson, A., and Martin, J. L. (2001). Identifying rice fields at risk from damage by the greater flamingo. Journal of Applied Ecology 38, 170–179.
Identifying rice fields at risk from damage by the greater flamingo.Crossref | GoogleScholarGoogle Scholar |

Viana, I. R., Prevedello, J. A., and Zocche, J. J. (2017). Effects of landscape composition on the occurrence of a widespread invasive bird species in the Brazilian Atlantic Forest. Perspectives in Ecology and Conservation 15, 36–41.
Effects of landscape composition on the occurrence of a widespread invasive bird species in the Brazilian Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |

Yoccoz, N. G., Nichols, J. D., and Boulinier, T. (2001). Monitoring of biological diversity in space and time. Trends in Ecology & Evolution 16, 446–453.
Monitoring of biological diversity in space and time.Crossref | GoogleScholarGoogle Scholar |

Zaccagnini, M. E., Canavelli, S. B., Calamari, N. C., and Schrag, A. M. (2010). Regional bird monitoring as a tool for predicting the effects of land use and climate change on pampas biodiversity. In ‘Climate Change, Biodiversity and Sustainability in the Americas: Impacts and Adaptations’. (Eds F. Dallmeier, A. Fenech, D. Maciver and R. Szaro.) pp. 39–52. (Smithsonian Institution Scholarly Press and Rowman & Littlefield Publishers, Inc., Washington, DC.)

Zufiaurre, E., Codesido, M., Abba, A. M., and Bilenca, D. (2017). The seasonal role of field characteristics on seed-eating bird abundances in agricultural landscapes. Current Zoology 63, 279–286.